{"title":"Cosmic Gamma-Ray Spectroscopy","authors":"R. Diehl","doi":"10.1080/21672857.2013.11519722","DOIUrl":null,"url":null,"abstract":"Abstract Penetrating gamma- rays require complex instrumentation for astronomical spectroscopy measurements of gamma-rays from cosmic sources. A combination of multiple-interaction detectors in space and post-processing of detector events on ground have lead to a spectroscopy performance which is now capable to provide new astrophysical insights. Spectral signatures in the MeV regime originate from transitions in atomic nuclei, stimulated by either radioactive decays or high-energy nuclear collisions such as with cosmic rays. Lines have been detected from radioactive isotopes produced in stellar and supernova nuclear burning, and from energetic-particle interactions in solar flares. Radioactive-decay gamma-rays from 56Ni directly reflect the power source of supernova light. 44Ti is produced in core-collapse supernova interiors and the largely unknown and dynamical conditions herein. From 26Al and 60Fe which are distributed in interstellar space from massive-star nucleosynthesis over millions of years. Additionally, nuclear de-excitation lines have been measured in solar-flare events, and convey information a b out energetic particle production in these outbursts, and t heir interaction in the solar atmosphere. Annihilating posit rons add another very special astrophysical source, which has been puzzling so far, with its characteristic gamma-rays at 511 keV; it has been measured both in such solar flares, and throughout the interstellar medium of our Milky Way galaxy. - We discuss instrumentation and data processing for cosmic gamma-ray spectroscopy, and the astrophysical issues and insights from these measurements.","PeriodicalId":204186,"journal":{"name":"Astronomical Review","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomical Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21672857.2013.11519722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract Penetrating gamma- rays require complex instrumentation for astronomical spectroscopy measurements of gamma-rays from cosmic sources. A combination of multiple-interaction detectors in space and post-processing of detector events on ground have lead to a spectroscopy performance which is now capable to provide new astrophysical insights. Spectral signatures in the MeV regime originate from transitions in atomic nuclei, stimulated by either radioactive decays or high-energy nuclear collisions such as with cosmic rays. Lines have been detected from radioactive isotopes produced in stellar and supernova nuclear burning, and from energetic-particle interactions in solar flares. Radioactive-decay gamma-rays from 56Ni directly reflect the power source of supernova light. 44Ti is produced in core-collapse supernova interiors and the largely unknown and dynamical conditions herein. From 26Al and 60Fe which are distributed in interstellar space from massive-star nucleosynthesis over millions of years. Additionally, nuclear de-excitation lines have been measured in solar-flare events, and convey information a b out energetic particle production in these outbursts, and t heir interaction in the solar atmosphere. Annihilating posit rons add another very special astrophysical source, which has been puzzling so far, with its characteristic gamma-rays at 511 keV; it has been measured both in such solar flares, and throughout the interstellar medium of our Milky Way galaxy. - We discuss instrumentation and data processing for cosmic gamma-ray spectroscopy, and the astrophysical issues and insights from these measurements.