{"title":"DVRNet: Decoupled Visible Region Network for Pedestrian Detection","authors":"Lei Shi, Charles Livermore, I. Kakadiaris","doi":"10.1109/IJCB48548.2020.9304883","DOIUrl":null,"url":null,"abstract":"Pedestrian detection remains a challenging task due to the problems caused by occlusion variance. Visible-body bounding boxes are typically used as an extra supervision signal to improve the performance of pedestrian detection to predict the full-body. However, visible-body assisted approaches produce a large number of false positives, which result from a lack of adequate and discriminative full-body contextual information. In this paper, we propose a new network, dubbed DVRNet, based on the representative visible-body assisted pedestrian detector named Bi-box. Specifically, we extend Bi-box by adding three modules named the attention-based feature interleaver module (AFIM), the binary mask learning module (BMLM), and the head-aware feature enhancement module (HFEM), which play important roles in employing features learned by the visible-body and the head supervision signals to enrich high discriminative contextual information of the full-body and enhance the power of feature representation. Experimental results indicate that the DVRNet achieves promising results on the CityPersons and the CrowdHuman datasets.","PeriodicalId":417270,"journal":{"name":"2020 IEEE International Joint Conference on Biometrics (IJCB)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB48548.2020.9304883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Pedestrian detection remains a challenging task due to the problems caused by occlusion variance. Visible-body bounding boxes are typically used as an extra supervision signal to improve the performance of pedestrian detection to predict the full-body. However, visible-body assisted approaches produce a large number of false positives, which result from a lack of adequate and discriminative full-body contextual information. In this paper, we propose a new network, dubbed DVRNet, based on the representative visible-body assisted pedestrian detector named Bi-box. Specifically, we extend Bi-box by adding three modules named the attention-based feature interleaver module (AFIM), the binary mask learning module (BMLM), and the head-aware feature enhancement module (HFEM), which play important roles in employing features learned by the visible-body and the head supervision signals to enrich high discriminative contextual information of the full-body and enhance the power of feature representation. Experimental results indicate that the DVRNet achieves promising results on the CityPersons and the CrowdHuman datasets.