A Farming-for-Mining-Framework to Gain Knowledge in Supply Chains

Joachim Hunker, Alexander Wuttke, Anne Antonia Scheidler, M. Rabe
{"title":"A Farming-for-Mining-Framework to Gain Knowledge in Supply Chains","authors":"Joachim Hunker, Alexander Wuttke, Anne Antonia Scheidler, M. Rabe","doi":"10.1109/WSC52266.2021.9715372","DOIUrl":null,"url":null,"abstract":"Gaining knowledge from a given data basis is a complex challenge. One of the frequently used methods in the context of a supply chain (SC) is knowledge discovery in databases (KDD). For a purposeful and successful knowledge discovery, valid and preprocessed input data are necessary. Besides preprocessing collected observational data, simulation can be used to generate a data basis as an input for the knowledge discovery process. The process of using a simulation model as a data generator is called data farming. This paper investigates the link between data farming and data mining. We developed a Farming-for-Mining-Framework, where we highlight requirements of knowledge discovery techniques and derive how the simulation model for data generation can be configured accordingly, e.g., to meet the required data accuracy. We suggest that this is a promising approach and is worth further research attention.","PeriodicalId":369368,"journal":{"name":"2021 Winter Simulation Conference (WSC)","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC52266.2021.9715372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Gaining knowledge from a given data basis is a complex challenge. One of the frequently used methods in the context of a supply chain (SC) is knowledge discovery in databases (KDD). For a purposeful and successful knowledge discovery, valid and preprocessed input data are necessary. Besides preprocessing collected observational data, simulation can be used to generate a data basis as an input for the knowledge discovery process. The process of using a simulation model as a data generator is called data farming. This paper investigates the link between data farming and data mining. We developed a Farming-for-Mining-Framework, where we highlight requirements of knowledge discovery techniques and derive how the simulation model for data generation can be configured accordingly, e.g., to meet the required data accuracy. We suggest that this is a promising approach and is worth further research attention.
以农换矿的供应链知识获取框架
从给定的数据基础中获取知识是一项复杂的挑战。在供应链环境中经常使用的方法之一是数据库中的知识发现(KDD)。对于有目的和成功的知识发现,有效和预处理的输入数据是必要的。除了对收集到的观测数据进行预处理外,还可以使用模拟来生成数据基础,作为知识发现过程的输入。使用仿真模型作为数据生成器的过程称为数据耕种。本文探讨了数据农业与数据挖掘之间的联系。我们开发了一个“从农业到采矿”的框架,在这个框架中,我们强调了知识发现技术的要求,并推导了如何相应地配置数据生成的仿真模型,例如,满足所需的数据准确性。我们认为这是一种很有前途的方法,值得进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信