Generative capacities of grammars codification for evolution of NN architectures

M. A. Guinea, G. Gutiérrez, I. Galván, A. Sanchis, J. M. Molina
{"title":"Generative capacities of grammars codification for evolution of NN architectures","authors":"M. A. Guinea, G. Gutiérrez, I. Galván, A. Sanchis, J. M. Molina","doi":"10.1109/CEC.2002.1006996","DOIUrl":null,"url":null,"abstract":"Designing the optimal neural net (NN) architecture can be formulated as a search problem in the architectures space, where each point represents an architecture. The search space of all possible architectures is very large, and the task of finding the simplest architecture may be an arduous and mostly a random task. Methods based on indirect encoding have been used to reduce the chromosome length. In this paper, a new indirect encoding method is proposed and an analysis of the generative capacity of the method is presented.","PeriodicalId":184547,"journal":{"name":"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2002.1006996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Designing the optimal neural net (NN) architecture can be formulated as a search problem in the architectures space, where each point represents an architecture. The search space of all possible architectures is very large, and the task of finding the simplest architecture may be an arduous and mostly a random task. Methods based on indirect encoding have been used to reduce the chromosome length. In this paper, a new indirect encoding method is proposed and an analysis of the generative capacity of the method is presented.
神经网络结构演化中语法编码的生成能力
设计最优神经网络(NN)体系结构可以表述为体系结构空间中的搜索问题,其中每个点代表一个体系结构。所有可能的体系结构的搜索空间非常大,寻找最简单的体系结构可能是一项艰巨的任务,而且大部分是随机的任务。基于间接编码的方法已被用于减少染色体长度。本文提出了一种新的间接编码方法,并分析了该方法的生成能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信