I. Chernyavskiy, T. Antonsen, A. Vlasov, J. Rodgers, B. Levush
{"title":"Modeling Stability of Vacuum Electronic Devices With the Large-Signal Code TESLA-Z","authors":"I. Chernyavskiy, T. Antonsen, A. Vlasov, J. Rodgers, B. Levush","doi":"10.1109/IVEC45766.2020.9520479","DOIUrl":null,"url":null,"abstract":"We present a new approach to the study of the stability of Vacuum Electronic devices using the large-signal code TESLA-Z. The approach combines a precomputed complex impedance matrix for the structure Z with a TESLA computed admittance matrix Y of the beam-tunnel loaded with an electron beam. The gain matrix G for a given device then can be found as the product of the Z-matrix of the structure and admittance matrix Y of the beam-tunnel. Subsequent analysis of the eigenvalues of the gain-matrix G uses the Nyquist method to determine the stability of the device. We discuss details of the new algorithms and illustrate its application using available examples.","PeriodicalId":170853,"journal":{"name":"2020 IEEE 21st International Conference on Vacuum Electronics (IVEC)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 21st International Conference on Vacuum Electronics (IVEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVEC45766.2020.9520479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We present a new approach to the study of the stability of Vacuum Electronic devices using the large-signal code TESLA-Z. The approach combines a precomputed complex impedance matrix for the structure Z with a TESLA computed admittance matrix Y of the beam-tunnel loaded with an electron beam. The gain matrix G for a given device then can be found as the product of the Z-matrix of the structure and admittance matrix Y of the beam-tunnel. Subsequent analysis of the eigenvalues of the gain-matrix G uses the Nyquist method to determine the stability of the device. We discuss details of the new algorithms and illustrate its application using available examples.