Semi-automated model extraction from observations for dependability analysis

András Földvári, A. Pataricza
{"title":"Semi-automated model extraction from observations for dependability analysis","authors":"András Földvári, A. Pataricza","doi":"10.1109/ISSREW53611.2021.00050","DOIUrl":null,"url":null,"abstract":"In complex distributed systems, the importance of empirical data analysis-based testing, verification, and validation increases to assure a proper level of service under the typically varying workload. Scaling of these systems needs reusable and scale-independent models for reconfigurability. The limited faithfulness of speculative analytic models does not support complex system identification. This way, empirical system identification from observations is emerging in this field. The increasing complexity necessitates explainable and well-interpretable models that follow the logic of everyday thinking to validate the model and its use in operation. Qualitative modeling represents and reasons about human-understandable symbolic, formalized, discrete abstractions of continuous temporal and magnitude aspects of system behavior. Our research focuses on empirical system engineering by extracting qualitative models from observations (e.g., benchmarks, operation logs) assisted by a combination of exploratory and confirmatory data analysis. Extracted models can form the core of supervisory control (e.g., digital twins) or diagnosis.","PeriodicalId":385392,"journal":{"name":"2021 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSREW53611.2021.00050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In complex distributed systems, the importance of empirical data analysis-based testing, verification, and validation increases to assure a proper level of service under the typically varying workload. Scaling of these systems needs reusable and scale-independent models for reconfigurability. The limited faithfulness of speculative analytic models does not support complex system identification. This way, empirical system identification from observations is emerging in this field. The increasing complexity necessitates explainable and well-interpretable models that follow the logic of everyday thinking to validate the model and its use in operation. Qualitative modeling represents and reasons about human-understandable symbolic, formalized, discrete abstractions of continuous temporal and magnitude aspects of system behavior. Our research focuses on empirical system engineering by extracting qualitative models from observations (e.g., benchmarks, operation logs) assisted by a combination of exploratory and confirmatory data analysis. Extracted models can form the core of supervisory control (e.g., digital twins) or diagnosis.
从观测数据中提取用于可靠性分析的半自动模型
在复杂的分布式系统中,基于经验数据分析的测试、验证和确认的重要性增加,以确保在典型的不同工作负载下提供适当的服务水平。这些系统的扩展需要可重用和规模无关的模型来实现可重构性。投机分析模型的有限可靠性不支持复杂系统的识别。这样,从观察中得出的经验系统识别就出现在这个领域。日益增加的复杂性需要可解释和易于解释的模型,这些模型遵循日常思维的逻辑,以验证模型及其在操作中的使用。定性建模对系统行为的连续时间和量级方面的人类可理解的符号、形式化、离散抽象进行了表示和解释。我们的研究侧重于经验系统工程,通过结合探索性和验证性数据分析,从观察(例如,基准测试,操作日志)中提取定性模型。提取的模型可以构成监督控制(例如,数字双胞胎)或诊断的核心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信