Separator based sparsification for dynamic planar graph algorithms

D. Eppstein, Z. Galil, G. Italiano, T. Spencer
{"title":"Separator based sparsification for dynamic planar graph algorithms","authors":"D. Eppstein, Z. Galil, G. Italiano, T. Spencer","doi":"10.1145/167088.167159","DOIUrl":null,"url":null,"abstract":"We describe algorithms and data structures for maintaining a dynamic planar graph subject to edge insertions and edge deletions that preserve planarity but that can change the embedding. We give a fully dynamic planarity testing algorithm that maintains a graph subject to edge insertions and deletions, and allows queries that test whether the graph is currently planar, or whether a potential new edge would violate planarity, in amortized time O(nl 12) per update or query. We maintain the 2and 3-vertex-connected components, and the 3and 4-edge-connected components of a planar graph in O(n.llz ) time per insertion, deletion or query. We give fully dynamic algorithms for maintaining the connected components, the 2-edge-connected components, and the minimum spanning forest of a planar graph in time (9(log n) per insertion and 0(log2 n) per deletion, assuming that insertions keep the graph planar. All our algorithms improve previous bounds: the improvements are based upon a new type of sparsification combined wit h several properties of separators in planar graphs.","PeriodicalId":280602,"journal":{"name":"Proceedings of the twenty-fifth annual ACM symposium on Theory of Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the twenty-fifth annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/167088.167159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

Abstract

We describe algorithms and data structures for maintaining a dynamic planar graph subject to edge insertions and edge deletions that preserve planarity but that can change the embedding. We give a fully dynamic planarity testing algorithm that maintains a graph subject to edge insertions and deletions, and allows queries that test whether the graph is currently planar, or whether a potential new edge would violate planarity, in amortized time O(nl 12) per update or query. We maintain the 2and 3-vertex-connected components, and the 3and 4-edge-connected components of a planar graph in O(n.llz ) time per insertion, deletion or query. We give fully dynamic algorithms for maintaining the connected components, the 2-edge-connected components, and the minimum spanning forest of a planar graph in time (9(log n) per insertion and 0(log2 n) per deletion, assuming that insertions keep the graph planar. All our algorithms improve previous bounds: the improvements are based upon a new type of sparsification combined wit h several properties of separators in planar graphs.
基于分隔符的动态平面图稀疏化算法
我们描述了用于维护动态平面图的算法和数据结构,这些图受边缘插入和边缘删除的影响,可以保留平面性,但可以改变嵌入。我们给出了一个完全动态的平面性测试算法,该算法维护一个受边缘插入和删除影响的图,并允许在每次更新或查询的平摊时间O(n12)内测试图当前是否是平面的,或者是否有一个潜在的新边会违反平面性。我们在O(n)中保持平面图形的2边连通分量和3边连通分量,3边连通分量和4边连通分量。(LLZ)每次插入、删除或查询所需的时间。我们给出了完全动态的算法来维护一个平面图的连通组件、2边连通组件和最小生成森林(每次插入9(log n)和每次删除0(log2 n)),假设插入保持图的平面。我们所有的算法都改进了以前的边界:这些改进是基于一种新型的稀疏化,结合了平面图中分隔符的几个属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信