Face Photo Synthesis Via Intermediate Semantic Enhancement Generative Adversarial Network

Haoxian Li, Jieying Zheng, Feng Liu
{"title":"Face Photo Synthesis Via Intermediate Semantic Enhancement Generative Adversarial Network","authors":"Haoxian Li, Jieying Zheng, Feng Liu","doi":"10.1109/ICIP46576.2022.9897523","DOIUrl":null,"url":null,"abstract":"Face sketch-photo synthesis is an important task in computer vision now. Recently, researchers have introduced face parsing to further improve the quality of synthesized face images. However, the semantic difference between face sketch parsing and photo parsing is usually ignored, leading to deformations and aliasing on synthesized face images. To solve these problems, we propose an intermediate face parsing to enhance the semantic information of the input face parsing. According to this intermediate face parsing, we propose an Intermediate Semantic Enhancement Generative Adversarial Network (ISEGAN) to generate high-quality realistic face photos. Furthermore, a Parsing Matching Loss (PM Loss) is proposed to encourage the intermediate face parsing to be more semantically accurate. Extensive comparison experiments demonstrate that our ISEGAN significantly out-performs the state-of-the-art methods.","PeriodicalId":387035,"journal":{"name":"2022 IEEE International Conference on Image Processing (ICIP)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP46576.2022.9897523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Face sketch-photo synthesis is an important task in computer vision now. Recently, researchers have introduced face parsing to further improve the quality of synthesized face images. However, the semantic difference between face sketch parsing and photo parsing is usually ignored, leading to deformations and aliasing on synthesized face images. To solve these problems, we propose an intermediate face parsing to enhance the semantic information of the input face parsing. According to this intermediate face parsing, we propose an Intermediate Semantic Enhancement Generative Adversarial Network (ISEGAN) to generate high-quality realistic face photos. Furthermore, a Parsing Matching Loss (PM Loss) is proposed to encourage the intermediate face parsing to be more semantically accurate. Extensive comparison experiments demonstrate that our ISEGAN significantly out-performs the state-of-the-art methods.
基于中间语义增强生成对抗网络的人脸照片合成
人脸素描-照片合成是当前计算机视觉领域的一个重要课题。近年来,为了进一步提高合成人脸图像的质量,研究人员引入了人脸解析技术。然而,人脸草图分析和照片分析之间的语义差异往往被忽略,导致合成的人脸图像变形和混叠。为了解决这些问题,我们提出了一种中间的人脸解析来增强输入人脸解析的语义信息。在此基础上,我们提出了一种中间语义增强生成对抗网络(ISEGAN)来生成高质量的逼真人脸照片。在此基础上,提出了一种解析匹配损失(PM Loss)方法来提高中间面解析的语义准确性。广泛的比较实验表明,我们的ISEGAN显著优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信