Ultra local binary pattern for image texture analysis

Yiu-ming Cheung, Junping Deng
{"title":"Ultra local binary pattern for image texture analysis","authors":"Yiu-ming Cheung, Junping Deng","doi":"10.1109/SPAC.2014.6982701","DOIUrl":null,"url":null,"abstract":"Local Binary Pattern (LBP) is a simple yet powerful method for image feature extraction in pattern recognition and image processing. However, the LBP operator of each pixel mainly depends on its neighboring pixels and emphasizes on local information too much. From the practical viewpoint, the information is quite limited if we consider the LBP operator in isolation, especially for a large image. To deal with this issue, we propose ultra LBP (U-LBP), which consider the relationship among different LBP operators. The proposed method cannot only get the local but also ultra local information. The effectiveness of the proposed algorithm is investigated on gender recognition and digit recognition, respectively. The experimental results show that the proposed method outperforms the traditional LBP.","PeriodicalId":326246,"journal":{"name":"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC.2014.6982701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Local Binary Pattern (LBP) is a simple yet powerful method for image feature extraction in pattern recognition and image processing. However, the LBP operator of each pixel mainly depends on its neighboring pixels and emphasizes on local information too much. From the practical viewpoint, the information is quite limited if we consider the LBP operator in isolation, especially for a large image. To deal with this issue, we propose ultra LBP (U-LBP), which consider the relationship among different LBP operators. The proposed method cannot only get the local but also ultra local information. The effectiveness of the proposed algorithm is investigated on gender recognition and digit recognition, respectively. The experimental results show that the proposed method outperforms the traditional LBP.
图像纹理分析的超局部二值模式
局部二值模式(LBP)是模式识别和图像处理中一种简单而强大的图像特征提取方法。然而,每个像素的LBP算子主要依赖于其相邻像素,过于强调局部信息。从实际应用的角度来看,如果孤立地考虑LBP算子,特别是对于大图像,得到的信息是非常有限的。为了解决这一问题,我们提出了考虑不同LBP算子之间关系的超LBP (U-LBP)算法。该方法既能获取局部信息,又能获取超局部信息。研究了该算法在性别识别和数字识别方面的有效性。实验结果表明,该方法优于传统的LBP算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信