Image restoration using neural networks

M. Figueiredo, J. Leitão
{"title":"Image restoration using neural networks","authors":"M. Figueiredo, J. Leitão","doi":"10.1109/ICASSP.1992.226033","DOIUrl":null,"url":null,"abstract":"Two neural algorithms for image restoration are proposed. The image is considered degraded by linear blur and additive white Gaussian noise. Maximum a posteriori estimation and regularization theory applied to this problem lead to the same high dimension optimization problem. The developed schemes, one having a sequential updating schedule and the other being fully parallel, implement iterative minimization algorithms which are proved to converge. The robustness of these algorithms with respect to finite numerical precision is studied. Examples with real images are presented.<<ETX>>","PeriodicalId":163713,"journal":{"name":"[Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1992.226033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Two neural algorithms for image restoration are proposed. The image is considered degraded by linear blur and additive white Gaussian noise. Maximum a posteriori estimation and regularization theory applied to this problem lead to the same high dimension optimization problem. The developed schemes, one having a sequential updating schedule and the other being fully parallel, implement iterative minimization algorithms which are proved to converge. The robustness of these algorithms with respect to finite numerical precision is studied. Examples with real images are presented.<>
利用神经网络进行图像恢复
提出了两种用于图像恢复的神经算法。图像被线性模糊和加性高斯白噪声所退化。最大后验估计和正则化理论的应用导致了同样的高维优化问题。所提出的方案,一种具有顺序更新计划,另一种是完全并行的,实现了迭代最小化算法,并被证明是收敛的。研究了这些算法在有限数值精度下的鲁棒性。给出了实际图像的实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信