{"title":"An efficient kernel adaptive filtering algorithm using hyperplane projection along affine subspace","authors":"M. Yukawa, R. Ishii","doi":"10.5281/ZENODO.52430","DOIUrl":null,"url":null,"abstract":"We propose a novel kernel adaptive filtering algorithm that selectively updates a few coefficients at each iteration by projecting the current filter onto the zero instantaneous-error hyperplane along a certain time-dependent affine subspace. Coherence is exploited for selecting the coefficients to be updated as well as for measuring the novelty of new data. The proposed algorithm is a natural extension of the normalized kernel least mean squares algorithm operating iterative hyperplane projections in a reproducing kernel Hilbert space. The proposed algorithm enjoys low computational complexity. Numerical examples indicate high potential of the proposed algorithm.","PeriodicalId":201182,"journal":{"name":"2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.52430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
We propose a novel kernel adaptive filtering algorithm that selectively updates a few coefficients at each iteration by projecting the current filter onto the zero instantaneous-error hyperplane along a certain time-dependent affine subspace. Coherence is exploited for selecting the coefficients to be updated as well as for measuring the novelty of new data. The proposed algorithm is a natural extension of the normalized kernel least mean squares algorithm operating iterative hyperplane projections in a reproducing kernel Hilbert space. The proposed algorithm enjoys low computational complexity. Numerical examples indicate high potential of the proposed algorithm.