Efficient Cross Validation for SVR Based on Center Distance in Kernel Space

Minghua Xie, Decheng Wang, Lili Xie
{"title":"Efficient Cross Validation for SVR Based on Center Distance in Kernel Space","authors":"Minghua Xie, Decheng Wang, Lili Xie","doi":"10.1109/IRCE.2019.00033","DOIUrl":null,"url":null,"abstract":"Cross validation (CV) is widely used to find the optimal parameters of the support vector regression (SVR) model. Regarding the conventional CV method, the optimal model parameters may be affected when the training set is randomly split into k disjoint folds. In the paper, an efficient CV based on center distance in kernel space is presented. Data splitting is based on the distance between the sample and the center point in the kernel space. Simulation experiments results show that the proposed CV method makes the selection of optimal model parameters more reasonable and improves the generalization ability of SVR model.","PeriodicalId":298781,"journal":{"name":"2019 2nd International Conference of Intelligent Robotic and Control Engineering (IRCE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 2nd International Conference of Intelligent Robotic and Control Engineering (IRCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRCE.2019.00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cross validation (CV) is widely used to find the optimal parameters of the support vector regression (SVR) model. Regarding the conventional CV method, the optimal model parameters may be affected when the training set is randomly split into k disjoint folds. In the paper, an efficient CV based on center distance in kernel space is presented. Data splitting is based on the distance between the sample and the center point in the kernel space. Simulation experiments results show that the proposed CV method makes the selection of optimal model parameters more reasonable and improves the generalization ability of SVR model.
基于核空间中心距离的SVR高效交叉验证
交叉验证(CV)被广泛用于寻找支持向量回归(SVR)模型的最佳参数。对于传统的CV方法,当训练集被随机分成k个不相交的折叠时,可能会影响模型的最优参数。本文提出了一种基于核空间中心距离的高效CV算法。数据分割是基于样本和内核空间中心点之间的距离。仿真实验结果表明,该方法使最优模型参数的选择更加合理,提高了SVR模型的泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信