Damage Tolerance in Biomedical Implants: Cardiac Valves and Endovascular Stents

R. Ritchie
{"title":"Damage Tolerance in Biomedical Implants: Cardiac Valves and Endovascular Stents","authors":"R. Ritchie","doi":"10.1115/imece2000-2671","DOIUrl":null,"url":null,"abstract":"\n The human heat rate is roughly 40 million beats per year. To prosthetic implants such as mechanical heart valves and endovascular stents, this means that they must endure almost 109 fatigue cycles during the patient’s lifetime. To prevent premature mechanical failures of such devices, which inevitably lead to patient fatalities, considerations of damage-tolerant design and life-prediction methodologies represent a preferred approach. In this presentation, a damage-tolerant approach to life prediction and “quality control” for both metallic and ceramic heart valve prostheses is presented, based on the notion that the useful life of the device is governed by the time for incipient defects in the material to propagate, by stress corrosion or more critically fatigue, to failure. Based on these analyses, the relative benefits of metallic (Co-Cr, Ti-6Al-4V) vs. ceramic (pyrolytic carbon) valves are discussed. Finally, analogous considerations are presented for endovascular stents, particularly those processed by laser cutting of the superelastic Ni-Ti alloy Nitinol. Again, the relative benefits of Nitinol vs. more traditional metallic implant materials (stainless steel, Co-Cr, titanium, titanium alloys) are discussed.","PeriodicalId":324509,"journal":{"name":"Materials: Book of Abstracts","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials: Book of Abstracts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2000-2671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The human heat rate is roughly 40 million beats per year. To prosthetic implants such as mechanical heart valves and endovascular stents, this means that they must endure almost 109 fatigue cycles during the patient’s lifetime. To prevent premature mechanical failures of such devices, which inevitably lead to patient fatalities, considerations of damage-tolerant design and life-prediction methodologies represent a preferred approach. In this presentation, a damage-tolerant approach to life prediction and “quality control” for both metallic and ceramic heart valve prostheses is presented, based on the notion that the useful life of the device is governed by the time for incipient defects in the material to propagate, by stress corrosion or more critically fatigue, to failure. Based on these analyses, the relative benefits of metallic (Co-Cr, Ti-6Al-4V) vs. ceramic (pyrolytic carbon) valves are discussed. Finally, analogous considerations are presented for endovascular stents, particularly those processed by laser cutting of the superelastic Ni-Ti alloy Nitinol. Again, the relative benefits of Nitinol vs. more traditional metallic implant materials (stainless steel, Co-Cr, titanium, titanium alloys) are discussed.
生物医学植入物的损伤容忍度:心脏瓣膜和血管内支架
人体的热率大约是每年4000万次。对于机械心脏瓣膜和血管内支架等假体植入物来说,这意味着它们在患者的一生中必须承受近109次疲劳循环。为了防止这些设备过早的机械故障,不可避免地导致患者死亡,考虑损伤容忍设计和寿命预测方法是首选的方法。在本报告中,提出了一种金属和陶瓷心脏瓣膜假体的寿命预测和“质量控制”的损伤容忍方法,该方法基于这样一种概念,即设备的使用寿命是由材料中早期缺陷传播的时间决定的,通过应力腐蚀或更关键的疲劳,直至失效。基于这些分析,讨论了金属(Co-Cr, Ti-6Al-4V)与陶瓷(热解碳)阀门的相对优势。最后,类似的考虑提出了血管内支架,特别是那些由激光切割的超弹性镍钛合金镍钛诺加工。本文再次讨论了镍钛诺与传统金属植入材料(不锈钢、钴铬合金、钛、钛合金)的相对优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信