HCI for Recommender Systems: the Past, the Present and the Future

André Calero Valdez, M. Ziefle, K. Verbert
{"title":"HCI for Recommender Systems: the Past, the Present and the Future","authors":"André Calero Valdez, M. Ziefle, K. Verbert","doi":"10.1145/2959100.2959158","DOIUrl":null,"url":null,"abstract":"How can you discover something new, that matches your interest? Recommender Systems have been studied since the 90ies. Their benefit comes from guiding a user through the density of the information jungle to useful knowledge clearings. Early research on recommender systems focuses on algorithms and their evaluation to improve recommendation accuracy using F-measures and other methodologies from signal-detection theory. Present research includes other aspects such as human factors that affect the user experience and interactive visualization techniques to support transparency of results and user control. In this paper, we analyze all publications on recommender systems from the scopus database, and particularly also papers with such an HCI focus. Based on an analysis of these papers, future topics for recommender systems research are identified, which include more advanced support for user control, adaptive interfaces, affective computing and applications in high risk domains.","PeriodicalId":315651,"journal":{"name":"Proceedings of the 10th ACM Conference on Recommender Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2959100.2959158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

Abstract

How can you discover something new, that matches your interest? Recommender Systems have been studied since the 90ies. Their benefit comes from guiding a user through the density of the information jungle to useful knowledge clearings. Early research on recommender systems focuses on algorithms and their evaluation to improve recommendation accuracy using F-measures and other methodologies from signal-detection theory. Present research includes other aspects such as human factors that affect the user experience and interactive visualization techniques to support transparency of results and user control. In this paper, we analyze all publications on recommender systems from the scopus database, and particularly also papers with such an HCI focus. Based on an analysis of these papers, future topics for recommender systems research are identified, which include more advanced support for user control, adaptive interfaces, affective computing and applications in high risk domains.
推荐系统的人机交互:过去、现在和未来
你怎样才能发现符合你兴趣的新事物呢?自上世纪90年代以来,人们一直在研究推荐系统。它们的好处在于引导用户在密集的信息丛林中找到有用的知识。推荐系统的早期研究主要集中在算法及其评估上,使用F-measures和信号检测理论中的其他方法来提高推荐的准确性。目前的研究包括其他方面,如影响用户体验的人为因素和交互式可视化技术,以支持结果的透明度和用户控制。在本文中,我们分析了scopus数据库中关于推荐系统的所有出版物,特别是那些以HCI为重点的论文。在分析这些论文的基础上,确定了推荐系统未来的研究主题,包括对用户控制、自适应界面、情感计算和高风险领域应用的更高级支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信