Fast & Accurate Gaussian Kernel Density Estimation

Jeffrey Heer, ExtBox Deriche
{"title":"Fast & Accurate Gaussian Kernel Density Estimation","authors":"Jeffrey Heer, ExtBox Deriche","doi":"10.1109/VIS49827.2021.9623323","DOIUrl":null,"url":null,"abstract":"Kernel density estimation (KDE) models a discrete sample of data as a continuous distribution, supporting the construction of visualizations such as violin plots, heatmaps, and contour plots. This paper draws on the statistics and image processing literature to survey efficient and scalable density estimation techniques for the common case of Gaussian kernel functions. We evaluate the accuracy and running time of these methods across multiple visualization contexts and find that the combination of linear binning and a recursive filter approximation by Deriche efficiently produces pixel-perfect estimates across a compelling range of kernel bandwidths.","PeriodicalId":387572,"journal":{"name":"2021 IEEE Visualization Conference (VIS)","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Visualization Conference (VIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VIS49827.2021.9623323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Kernel density estimation (KDE) models a discrete sample of data as a continuous distribution, supporting the construction of visualizations such as violin plots, heatmaps, and contour plots. This paper draws on the statistics and image processing literature to survey efficient and scalable density estimation techniques for the common case of Gaussian kernel functions. We evaluate the accuracy and running time of these methods across multiple visualization contexts and find that the combination of linear binning and a recursive filter approximation by Deriche efficiently produces pixel-perfect estimates across a compelling range of kernel bandwidths.
快速准确的高斯核密度估计
核密度估计(KDE)将离散的数据样本建模为连续分布,支持构造可视化,如小提琴图、热图和等高线图。本文借鉴了统计学和图像处理方面的文献,研究了高斯核函数常见情况下的高效、可扩展的密度估计技术。我们在多个可视化环境中评估了这些方法的准确性和运行时间,并发现线性分组和Deriche递归滤波器近似的组合在一个令人信服的核带宽范围内有效地产生像素完美估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信