Solving the Mixed Backhauling Vehicle Routing: Problem with Ants

Niaz A. Wassan, S. Salhi, G. Nagy, Naveed Wassan, A. Wade
{"title":"Solving the Mixed Backhauling Vehicle Routing: Problem with Ants","authors":"Niaz A. Wassan, S. Salhi, G. Nagy, Naveed Wassan, A. Wade","doi":"10.4018/ijeoe.2013040105","DOIUrl":null,"url":null,"abstract":"The mixed vehicle routing problem with backhauls is investigated using ant system heuristic. This distribution problem seems to suffer from a lack of published work even though it has immense practical applicability especially within logistic systems. Some enhancements to the basic ant system algorithm are embedded into the search. In particular a focus is on the choice in the placement of ants, the use of site-dependent candidate list, the introduction of a look ahead-based visibility, and appropriate strategies for updating local and global trails. Encouraging computational results are reported when tested on benchmark data sets.","PeriodicalId":246250,"journal":{"name":"Int. J. Energy Optim. Eng.","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Energy Optim. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijeoe.2013040105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The mixed vehicle routing problem with backhauls is investigated using ant system heuristic. This distribution problem seems to suffer from a lack of published work even though it has immense practical applicability especially within logistic systems. Some enhancements to the basic ant system algorithm are embedded into the search. In particular a focus is on the choice in the placement of ants, the use of site-dependent candidate list, the introduction of a look ahead-based visibility, and appropriate strategies for updating local and global trails. Encouraging computational results are reported when tested on benchmark data sets.
混合运货车辆路径的求解:蚁群问题
利用蚁群启发式算法研究了带回程的混合车辆路径问题。这种分布问题似乎受到缺乏出版工作的影响,尽管它具有巨大的实际适用性,特别是在物流系统中。对基本蚂蚁系统算法的一些增强被嵌入到搜索中。重点是蚂蚁放置的选择,与站点相关的候选列表的使用,基于前瞻性的可见性的引入,以及更新本地和全局路径的适当策略。在基准数据集上进行测试时,报告了令人鼓舞的计算结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信