Local maximum likelihood multiuser detection for CDMA communications

Yi Sun
{"title":"Local maximum likelihood multiuser detection for CDMA communications","authors":"Yi Sun","doi":"10.1109/ITCC.2001.918811","DOIUrl":null,"url":null,"abstract":"The optimum multiuser detector achieves global maximum likelihood and has a complexity growing exponentially with the number of users. We propose the local maximum likelihood (LML) multiuser detectors with an arbitrary neighborhood size. As the neighborhood size is one, two, etc., up to the total number of users, the computational complexity of the LML detector is linear quadratic, etc., up to exponential in the total number of users. Every LML detector is associated with a local minimum error probability defined with the corresponding neighborhood size. A family of local-maximum-likelihood likelihood-ascent-search (LMLAS) detectors is proposed, each of which is shown to be an LML detector. An LMLAS detector monotonically increases likelihood step by step, and thus converges to an LML point in a finite number of search steps with probability one. Following any detector, an LMLAS detector can reduce the error probability of the initial detector to a local minimum or not change it when the initial detector is an LML detector with the same or larger neighborhood size with probability one.","PeriodicalId":318295,"journal":{"name":"Proceedings International Conference on Information Technology: Coding and Computing","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings International Conference on Information Technology: Coding and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITCC.2001.918811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The optimum multiuser detector achieves global maximum likelihood and has a complexity growing exponentially with the number of users. We propose the local maximum likelihood (LML) multiuser detectors with an arbitrary neighborhood size. As the neighborhood size is one, two, etc., up to the total number of users, the computational complexity of the LML detector is linear quadratic, etc., up to exponential in the total number of users. Every LML detector is associated with a local minimum error probability defined with the corresponding neighborhood size. A family of local-maximum-likelihood likelihood-ascent-search (LMLAS) detectors is proposed, each of which is shown to be an LML detector. An LMLAS detector monotonically increases likelihood step by step, and thus converges to an LML point in a finite number of search steps with probability one. Following any detector, an LMLAS detector can reduce the error probability of the initial detector to a local minimum or not change it when the initial detector is an LML detector with the same or larger neighborhood size with probability one.
CDMA通信的局部最大似然多用户检测
最优多用户检测器实现全局最大似然,复杂度随用户数量呈指数增长。我们提出了具有任意邻域大小的局部最大似然(LML)多用户检测器。由于邻域大小为1、2等,直至用户总数,LML检测器的计算复杂度为线性二次元等,直至用户总数呈指数级增长。每个LML检测器都与用相应的邻域大小定义的局部最小错误概率相关联。提出了一组局部最大似然似然上升搜索(LMLAS)检测器,每个检测器都被证明是一个LML检测器。LMLAS检测器单调地逐步增加似然,从而在有限的搜索步骤中收敛到一个LML点,概率为1。在任意检测器之后,当初始检测器是与邻域大小相同或更大的LML检测器时,lllas检测器可以将初始检测器的错误概率降低到局部最小值或不改变初始检测器的错误概率,且概率为1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信