Automates cellulaires probabilistes et de la physique statistique

P. Louis
{"title":"Automates cellulaires probabilistes et de la physique statistique","authors":"P. Louis","doi":"10.3166/TSI.34.431-461","DOIUrl":null,"url":null,"abstract":"Probabilistic cellular automata are considered in this review. They are CA dynamics whose updating rule is a probability depending on each site's neighbourhood. Spatial homogeneity is recovered in distribution. Several families of examples are considered. The time-asymptotic behaviour is highly non trivial. Ergodicity and dynamical phase transition phenomena are explained and some associated criteria are given. These stochastic processes dynamics are considered from a statistical mechanics point of view. The relationships between the infinitely-many interacting case and the associated finite-volume case are stated. The importance of fixed boundary condition is emphasised.","PeriodicalId":109795,"journal":{"name":"Tech. Sci. Informatiques","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tech. Sci. Informatiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3166/TSI.34.431-461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Probabilistic cellular automata are considered in this review. They are CA dynamics whose updating rule is a probability depending on each site's neighbourhood. Spatial homogeneity is recovered in distribution. Several families of examples are considered. The time-asymptotic behaviour is highly non trivial. Ergodicity and dynamical phase transition phenomena are explained and some associated criteria are given. These stochastic processes dynamics are considered from a statistical mechanics point of view. The relationships between the infinitely-many interacting case and the associated finite-volume case are stated. The importance of fixed boundary condition is emphasised.
概率蜂窝自动机和统计物理
本文讨论了概率元胞自动机。它们是CA动态,其更新规则是依赖于每个站点邻域的概率。在分布上恢复了空间均匀性。考虑了几个家族的例子。时间渐近的性质是非平凡的。解释了遍历性和动态相变现象,并给出了相关判据。这些随机过程动力学是从统计力学的观点来考虑的。说明了无穷多相互作用情况与相应的有限体积情况之间的关系。强调了固定边界条件的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信