Denoising of impulse response using LS-SVM and SVD for aircraft flight flutter test

Weixian Tang, Zhong-ke Shi, Hong-chao Li
{"title":"Denoising of impulse response using LS-SVM and SVD for aircraft flight flutter test","authors":"Weixian Tang, Zhong-ke Shi, Hong-chao Li","doi":"10.1109/ISSCAA.2006.1627426","DOIUrl":null,"url":null,"abstract":"We propose a novel method that applies least-square support vector machines (LS-SVM) to denoising of impulse response signal for aircraft flight flutter test. This method is based on time series prediction using LS-SVM. Since the signal to noise ratio (SNR) varies with amplitude for the decaying property of damped sinusoid, the beginning data points with high SNR is used for training and prediction of the subsequent data with low SNR. In order to improve the performance of denoising, singular value decomposition (SVD) filtering is employed for signal preprocessing. Finally, the simulations and experiment on real flight test data demonstrate effectiveness and efficiency of our approach","PeriodicalId":275436,"journal":{"name":"2006 1st International Symposium on Systems and Control in Aerospace and Astronautics","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 1st International Symposium on Systems and Control in Aerospace and Astronautics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCAA.2006.1627426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We propose a novel method that applies least-square support vector machines (LS-SVM) to denoising of impulse response signal for aircraft flight flutter test. This method is based on time series prediction using LS-SVM. Since the signal to noise ratio (SNR) varies with amplitude for the decaying property of damped sinusoid, the beginning data points with high SNR is used for training and prediction of the subsequent data with low SNR. In order to improve the performance of denoising, singular value decomposition (SVD) filtering is employed for signal preprocessing. Finally, the simulations and experiment on real flight test data demonstrate effectiveness and efficiency of our approach
基于LS-SVM和奇异值分解的飞机颤振试验脉冲响应去噪
提出了一种将最小二乘支持向量机(LS-SVM)应用于飞机颤振试验脉冲响应信号去噪的新方法。该方法基于LS-SVM的时间序列预测。由于阻尼正弦波的衰减特性导致信噪比随幅值变化,因此利用高信噪比的起始数据点对后续低信噪比数据进行训练和预测。为了提高去噪性能,采用奇异值分解(SVD)滤波对信号进行预处理。最后,对真实飞行试验数据进行了仿真和实验,验证了该方法的有效性和高效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信