A Large-Scale Compressed 360-Degree Spherical Image Database: From Subjective Quality Evaluation to Objective Model Comparison

Wei Sun, Ke Gu, Siwei Ma, Wenhan Zhu, Ning Liu, Guangtao Zhai
{"title":"A Large-Scale Compressed 360-Degree Spherical Image Database: From Subjective Quality Evaluation to Objective Model Comparison","authors":"Wei Sun, Ke Gu, Siwei Ma, Wenhan Zhu, Ning Liu, Guangtao Zhai","doi":"10.1109/MMSP.2018.8547102","DOIUrl":null,"url":null,"abstract":"360-degree images/videos have been dramatically increasing in recent years. But the high resolution makes it difficult to be transported, compressed and stored, and thus constrains the development of 360-degree images/videos. Therefore, it is important to study how popular coding technologies influence the quality of 360-degree images. In this paper, we present a study on subjective assessment of compressed 360-degree images and investigate whether existing objective image quality assessment (IQA) methods can effectively evaluate the quality of compressed 360-degree images. We first construct the largest compressed 360-degree image database (CVIQD2018) including 16 source images and 528 compressed ones with three prevailing coding technologies. Then, we implement 16 full reference (FR) IQA metrics, which include 10 traditional IQA metrics for 2D images and 3 PSNR-based metrics for 360-degree images, as well as 5 no reference (NR) IQA metrics and calculate the correlation between each above metric and subjective assessment in terms of three commonly used performance indices. The experiment results reveal structure information, visual saliency information and compensation for geometric distortion are crucial for evaluating the quality of compressed 360-degree images.","PeriodicalId":137522,"journal":{"name":"2018 IEEE 20th International Workshop on Multimedia Signal Processing (MMSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 20th International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2018.8547102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

Abstract

360-degree images/videos have been dramatically increasing in recent years. But the high resolution makes it difficult to be transported, compressed and stored, and thus constrains the development of 360-degree images/videos. Therefore, it is important to study how popular coding technologies influence the quality of 360-degree images. In this paper, we present a study on subjective assessment of compressed 360-degree images and investigate whether existing objective image quality assessment (IQA) methods can effectively evaluate the quality of compressed 360-degree images. We first construct the largest compressed 360-degree image database (CVIQD2018) including 16 source images and 528 compressed ones with three prevailing coding technologies. Then, we implement 16 full reference (FR) IQA metrics, which include 10 traditional IQA metrics for 2D images and 3 PSNR-based metrics for 360-degree images, as well as 5 no reference (NR) IQA metrics and calculate the correlation between each above metric and subjective assessment in terms of three commonly used performance indices. The experiment results reveal structure information, visual saliency information and compensation for geometric distortion are crucial for evaluating the quality of compressed 360-degree images.
大规模压缩360度球形图像数据库:从主观质量评价到客观模型比较
近年来,360度全景图像/视频急剧增加。但是高分辨率给传输、压缩和存储带来了困难,从而限制了360度图像/视频的发展。因此,研究流行的编码技术如何影响360度图像的质量是很重要的。本文对压缩360度图像的主观评价进行了研究,并探讨了现有的客观图像质量评价(IQA)方法是否能够有效地评价压缩360度图像的质量。我们首先构建了最大的压缩360度图像数据库(CVIQD2018),包含16个源图像和528个压缩图像,采用三种流行的编码技术。然后,我们实现了16个全参考(FR) IQA指标,其中包括10个用于2D图像的传统IQA指标和3个用于360度图像的基于psnr的IQA指标,以及5个无参考(NR) IQA指标,并根据3个常用的性能指标计算了上述指标与主观评价之间的相关性。实验结果表明,结构信息、视觉显著性信息和几何畸变补偿是评价压缩后360度图像质量的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信