{"title":"Audio Signal Mapping into Spectrogram-Based Images for Deep Learning Applications","authors":"D. Ćirić, Z. Perić, J. Nikolić, N. Vučić","doi":"10.1109/INFOTEH51037.2021.9400698","DOIUrl":null,"url":null,"abstract":"Various features generated from raw audio signals can be used as an input of a deep learning model. They include hand-crafted features such as mel-frequency cepstral coefficients, two-dimensional time-frequency representations and raw audio data. In most cases, the time-frequency representations are related to so-called spectrogram-based images. Having an image at the deep learning input enables to apply performance improvement accumulated in video and image processing. However, spectrogram-based images have some specific properties that should be taken into account when a deep learning model is designed. This paper deals with mapping of audio signals into the most common spectrogram-based images. Some unique properties of these images as well as the way how they are generated are analyzed here for a particular case of fridge sounds.","PeriodicalId":326402,"journal":{"name":"2021 20th International Symposium INFOTEH-JAHORINA (INFOTEH)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 20th International Symposium INFOTEH-JAHORINA (INFOTEH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOTEH51037.2021.9400698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Various features generated from raw audio signals can be used as an input of a deep learning model. They include hand-crafted features such as mel-frequency cepstral coefficients, two-dimensional time-frequency representations and raw audio data. In most cases, the time-frequency representations are related to so-called spectrogram-based images. Having an image at the deep learning input enables to apply performance improvement accumulated in video and image processing. However, spectrogram-based images have some specific properties that should be taken into account when a deep learning model is designed. This paper deals with mapping of audio signals into the most common spectrogram-based images. Some unique properties of these images as well as the way how they are generated are analyzed here for a particular case of fridge sounds.