Using local search strategies to improve the performance of NSGA-II for the Multi-Criteria Minimum Spanning Tree problem

J. Parraga-Alava, M. Dorn, Mario Inostroza-Ponta
{"title":"Using local search strategies to improve the performance of NSGA-II for the Multi-Criteria Minimum Spanning Tree problem","authors":"J. Parraga-Alava, M. Dorn, Mario Inostroza-Ponta","doi":"10.1109/CEC.2017.7969432","DOIUrl":null,"url":null,"abstract":"Finding a solution to the Multi-Criteria Minimum Spanning Tree (mc-MST) problem has direct benefit on real world problems. The Multi-objective Evolutionary Algorithm (MOEA) called NSGA-II (Non-Dominated Sorting Genetic Algorithm) has demonstrated to be the most promising approach to tackle mc-MST problem because of their efficiency and simplicity of implementation. However, it often reaches premature convergence and gets stuck at local optima causing the non-diversity of the population. To tackle this situation, the use local search strategies together with MOEAs has shown to be a good alternative. In this paper, we investigate the potential of local search methods to improve the overall effectiveness of NSGA-II to settle the mc-MST problem. We evaluate the performance of three general purpose local searches (Pareto Local Search, Tabu Search and Path Relinking) adapted to the multi-objective approach. Experimental results show that using Pareto Local Search (PLS) into the NSGA-II offers a better performance in terms of diversity and search space covered to settle the mc-MST problem.","PeriodicalId":335123,"journal":{"name":"2017 IEEE Congress on Evolutionary Computation (CEC)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2017.7969432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Finding a solution to the Multi-Criteria Minimum Spanning Tree (mc-MST) problem has direct benefit on real world problems. The Multi-objective Evolutionary Algorithm (MOEA) called NSGA-II (Non-Dominated Sorting Genetic Algorithm) has demonstrated to be the most promising approach to tackle mc-MST problem because of their efficiency and simplicity of implementation. However, it often reaches premature convergence and gets stuck at local optima causing the non-diversity of the population. To tackle this situation, the use local search strategies together with MOEAs has shown to be a good alternative. In this paper, we investigate the potential of local search methods to improve the overall effectiveness of NSGA-II to settle the mc-MST problem. We evaluate the performance of three general purpose local searches (Pareto Local Search, Tabu Search and Path Relinking) adapted to the multi-objective approach. Experimental results show that using Pareto Local Search (PLS) into the NSGA-II offers a better performance in terms of diversity and search space covered to settle the mc-MST problem.
利用局部搜索策略改进NSGA-II多准则最小生成树问题的性能
寻找多准则最小生成树(mc-MST)问题的解决方案对现实世界的问题有直接的好处。多目标进化算法(MOEA)称为NSGA-II(非支配排序遗传算法)已被证明是最有希望解决mc-MST问题的方法,因为它们的效率和实现简单。然而,它往往达到过早收敛,陷入局部最优,导致种群的非多样性。为了解决这种情况,将本地搜索策略与moea结合使用已被证明是一个很好的选择。在本文中,我们研究了局部搜索方法的潜力,以提高NSGA-II解决mc-MST问题的整体有效性。我们评估了适应多目标方法的三种通用局部搜索(帕累托局部搜索、禁忌搜索和路径重链接)的性能。实验结果表明,在NSGA-II中使用Pareto局部搜索(PLS)在多样性和覆盖的搜索空间方面具有更好的性能,可以解决mc-MST问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信