ECG artifacts detection in noncardiovascular signals using Slope Sum Function and Teager Kaiser Energy

Shalini A. Rankawat, M. Rankawat, R. Dubey
{"title":"ECG artifacts detection in noncardiovascular signals using Slope Sum Function and Teager Kaiser Energy","authors":"Shalini A. Rankawat, M. Rankawat, R. Dubey","doi":"10.1109/ICBAPS.2015.7292208","DOIUrl":null,"url":null,"abstract":"A new method for ECG artifacts detection from noncardiovascular physiological signals namely Electroencephalogram (EEG), Electrooculogram (EOG) and Electromyogram (EMG), without the need of any additional synchronous ECG channel, is being proposed. This ECG artifacts (R peaks) detection method uses Slope Sum Function and Teager Kaiser Energy operator with an adaptive threshold. The performance of algorithm has been evaluated on PhysioNet database of challenge 2014 and MIT BIH polysomnographic database. The algorithm has shown improved ECG artifacts detection results as compared to that of direct application of Teager Kaiser energy operator on noncardiovascular signals. The detection rates of ECG artifacts with the new method is 96.12 percent with FN rate of 3.88 percent and FP rate of 3.16 percent for PhysioNet database challenge 2014. For MIT BIH database the artifacts detection rate is 95.57 percent with FN rate of 4.44 percent and FP rate of 3.57 percent, which shows an excellent performance in ECG artifacts detection.","PeriodicalId":243293,"journal":{"name":"2015 International Conference on BioSignal Analysis, Processing and Systems (ICBAPS)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on BioSignal Analysis, Processing and Systems (ICBAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBAPS.2015.7292208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

A new method for ECG artifacts detection from noncardiovascular physiological signals namely Electroencephalogram (EEG), Electrooculogram (EOG) and Electromyogram (EMG), without the need of any additional synchronous ECG channel, is being proposed. This ECG artifacts (R peaks) detection method uses Slope Sum Function and Teager Kaiser Energy operator with an adaptive threshold. The performance of algorithm has been evaluated on PhysioNet database of challenge 2014 and MIT BIH polysomnographic database. The algorithm has shown improved ECG artifacts detection results as compared to that of direct application of Teager Kaiser energy operator on noncardiovascular signals. The detection rates of ECG artifacts with the new method is 96.12 percent with FN rate of 3.88 percent and FP rate of 3.16 percent for PhysioNet database challenge 2014. For MIT BIH database the artifacts detection rate is 95.57 percent with FN rate of 4.44 percent and FP rate of 3.57 percent, which shows an excellent performance in ECG artifacts detection.
利用斜率和函数和Teager Kaiser能量检测非心血管信号中的心电伪影
提出了一种从脑电图(EEG)、眼电图(EOG)和肌电图(EMG)等非心血管生理信号中检测心电伪影的新方法,该方法不需要任何额外的同步心电通道。该方法采用斜率和函数和带自适应阈值的Teager Kaiser能量算子检测心电伪影(R峰)。在2014年的PhysioNet数据库和MIT BIH多导睡眠图数据库上对算法的性能进行了评估。与直接应用Teager Kaiser能量算子检测非心血管信号相比,该算法的心电伪影检测结果有所改善。在2014年的PhysioNet数据库挑战中,新方法对心电伪像的检测率为96.12%,FN率为3.88%,FP率为3.16%。对于MIT BIH数据库,伪影检出率为95.57%,其中FN检出率为4.44%,FP检出率为3.57%,在心电伪影检测中表现出优异的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信