{"title":"An ASIP design methodology for embedded systems","authors":"K. Kucukcakar","doi":"10.1109/HSC.1999.777384","DOIUrl":null,"url":null,"abstract":"A well-known challenge during processor design is to obtain the best possible results for a typical target application domain that is generally described as a set of benchmarks. Obtaining the best possible result in turn becomes a complex tradeoff between the generality of the processor and the physical characteristics. A custom instruction to perform a task can result in significant improvements for an application, but generally, at the expense of some overhead for all other applications. In the recent years, Application-Specific Instruction-Set Processors (ASIP) have gained popularity in production chips as well as in the research community. In this paper, we present a unique architecture and methodology to design ASIPs in the embedded controller domain by customizing an existing processor instruction set and architecture rather than creating an entirely new ASIP tuned to a benchmark.","PeriodicalId":344739,"journal":{"name":"Proceedings of the Seventh International Workshop on Hardware/Software Codesign (CODES'99) (IEEE Cat. No.99TH8450)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Seventh International Workshop on Hardware/Software Codesign (CODES'99) (IEEE Cat. No.99TH8450)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HSC.1999.777384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37
Abstract
A well-known challenge during processor design is to obtain the best possible results for a typical target application domain that is generally described as a set of benchmarks. Obtaining the best possible result in turn becomes a complex tradeoff between the generality of the processor and the physical characteristics. A custom instruction to perform a task can result in significant improvements for an application, but generally, at the expense of some overhead for all other applications. In the recent years, Application-Specific Instruction-Set Processors (ASIP) have gained popularity in production chips as well as in the research community. In this paper, we present a unique architecture and methodology to design ASIPs in the embedded controller domain by customizing an existing processor instruction set and architecture rather than creating an entirely new ASIP tuned to a benchmark.