{"title":"Computational balance in real-time cyclic spectral analysis","authors":"R. S. Roberts, H. Loomis","doi":"10.1109/ICASSP.1994.389846","DOIUrl":null,"url":null,"abstract":"Real-time cyclic spectral analysis is useful in many applications, but is difficult to achieve because of its computational complexity. This paper studies the distribution of complex multipliers in multiprocessor cyclic spectrum analyzers, with the objective of obtaining computational balance. Computationally balanced implementations efficiently use hardware so that computational bottlenecks are reduced and a smooth flow of data between computational sections of the analyzer is maintained. Tables are presented that give the number of complex multipliers required in each section of the analyzer to obtain computational balance.<<ETX>>","PeriodicalId":290798,"journal":{"name":"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"iv 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1994.389846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Real-time cyclic spectral analysis is useful in many applications, but is difficult to achieve because of its computational complexity. This paper studies the distribution of complex multipliers in multiprocessor cyclic spectrum analyzers, with the objective of obtaining computational balance. Computationally balanced implementations efficiently use hardware so that computational bottlenecks are reduced and a smooth flow of data between computational sections of the analyzer is maintained. Tables are presented that give the number of complex multipliers required in each section of the analyzer to obtain computational balance.<>