Uniqueness of Linear Combinations of Ridge Functions

Jinling Long, Wei Wu, Dong Nan, Junfang Wang
{"title":"Uniqueness of Linear Combinations of Ridge Functions","authors":"Jinling Long, Wei Wu, Dong Nan, Junfang Wang","doi":"10.1109/ICNC.2007.790","DOIUrl":null,"url":null,"abstract":"Ridge functions are multivariate functions of the form g(a ldr x), where g is a univariate function, and a ldr x is the inner product of a isin R<sup>d</sup>\\{0} and x isin R<sup>d</sup>. We are concerned with the uniqueness of representation of a given function as some sum of ridge functions. We prove that if f(x) = Sigma<sub>i=1</sub> <sup>m</sup> g<sub>i</sub>(a<sup>i</sup>ldr x) = 0 for some a<sup>i</sup> = (a<sub>1</sub> <sup>i</sup>, hellip , a<sub>d</sub> <sup>i</sup>) isin R<sup>d</sup>\\{0}, and if g<sub>i</sub> isin L<sub>loc</sub> <sup>p</sup>(R) (or g<sub>i</sub> isin D' (R) and g<sub>i</sub>(a<sup>i</sup> ldr x) isin D' (R<sup>d</sup>)), then, each g<sub>i</sub> is a polynomial of degree at most m - 2. We also prove a theorem on the smoothness of linear combinations of ridge functions. These results improve the existing results.","PeriodicalId":250881,"journal":{"name":"Third International Conference on Natural Computation (ICNC 2007)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference on Natural Computation (ICNC 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2007.790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ridge functions are multivariate functions of the form g(a ldr x), where g is a univariate function, and a ldr x is the inner product of a isin Rd\{0} and x isin Rd. We are concerned with the uniqueness of representation of a given function as some sum of ridge functions. We prove that if f(x) = Sigmai=1 m gi(aildr x) = 0 for some ai = (a1 i, hellip , ad i) isin Rd\{0}, and if gi isin Lloc p(R) (or gi isin D' (R) and gi(ai ldr x) isin D' (Rd)), then, each gi is a polynomial of degree at most m - 2. We also prove a theorem on the smoothness of linear combinations of ridge functions. These results improve the existing results.
脊函数线性组合的唯一性
岭函数是形式为g(a ldr x)的多元函数,其中g是单变量函数,而a ldr x是a isin Rd\{0}与x isin Rd的内积。我们关注的是给定函数表示为岭函数的一些和的唯一性。我们证明了如果f(x) = Sigmai=1 m gi(aildr x) = 0,对于某些ai= (a1 i, hellip, ad i) isin Rd\{0},且gi = Lloc p(R)(或gi = D' (R)和gi(aildr x) isin D' (Rd)),则每个gi都是至多m - 2次的多项式。我们还证明了脊函数线性组合的光滑性定理。这些结果改进了现有的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信