Liana C. L. Portugal, T. Ramos, Orlando Fernandes Jr., A. Bastos, B. Campos, Mauro V. Mendlowicz, M. Luz, C. Portella, Eliane Volchan, Isabel A. David, Fátima Erthal, M. Pereira, L. Oliveira
{"title":"Predição de sintomas de TEPT a partir da ativação cerebral em pessoas expostas a imagens de mutilação","authors":"Liana C. L. Portugal, T. Ramos, Orlando Fernandes Jr., A. Bastos, B. Campos, Mauro V. Mendlowicz, M. Luz, C. Portella, Eliane Volchan, Isabel A. David, Fátima Erthal, M. Pereira, L. Oliveira","doi":"10.5753/sbcas.2023.229589","DOIUrl":null,"url":null,"abstract":"O objetivo do presente estudo foi verificar a possibilidade de predição dos sintomas do Transtorno de Estresse Pós-Traumático (TEPT) a partir dos padrões de atividade cerebral. Os participantes expostos a situações traumáticas foram submetidos a exames de Ressonância Magnética Funcional (RMf) enquanto eram expostos a fotos neutras e de corpos mutilados. Neste experimento, foram criados dois contextos de imagens aversivas (real e seguro). O modelo de aprendizado de máquina foi capaz de predizer sintomas de TEPT a partir de padrões de atividade cerebral em resposta às imagens de mutilação no contexto real, mas não no contexto seguro. As regiões cerebrais que apresentaram maior contribuição para o modelo foram as regiões occipitoparietais, incluindo o giro parietal superior e inferior, e o giro supramarginal.","PeriodicalId":122965,"journal":{"name":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbcas.2023.229589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
O objetivo do presente estudo foi verificar a possibilidade de predição dos sintomas do Transtorno de Estresse Pós-Traumático (TEPT) a partir dos padrões de atividade cerebral. Os participantes expostos a situações traumáticas foram submetidos a exames de Ressonância Magnética Funcional (RMf) enquanto eram expostos a fotos neutras e de corpos mutilados. Neste experimento, foram criados dois contextos de imagens aversivas (real e seguro). O modelo de aprendizado de máquina foi capaz de predizer sintomas de TEPT a partir de padrões de atividade cerebral em resposta às imagens de mutilação no contexto real, mas não no contexto seguro. As regiões cerebrais que apresentaram maior contribuição para o modelo foram as regiões occipitoparietais, incluindo o giro parietal superior e inferior, e o giro supramarginal.