{"title":"Deformation behaviour and microstructural evolution of high-entropy CoFeMnNi alloy at hot deformation condition with low strain rate","authors":"Lihua Du, Jiaai Shi, Jiayu Liang, Kailun Zheng","doi":"10.21741/9781644902615-29","DOIUrl":null,"url":null,"abstract":"Abstract. High-entropy alloy is a promising structural material for high-temperature service applications due to the designable superior properties. Superplasticity, normally achieved at relatively high temperature and low strain rate, enables difficult to formation materials to manufacture complex-shaped parts. This paper presents a feasibility experimental study on the deformation and microstructure of CoFeMnNi high-entropy alloy under hot deformation conditions with low strain rate. A series of hot uniaxial tests were conducted at the temperature range between 800-1000℃ with typical strain rates of 10-4 and 10-5/s to determine the stress-strain behaviours. Additionally, to understand the deformation mechanism, microstructure evolution after deformation was characterized. Finally, a mechanism based constitutive model of high-entropy alloy was developed, which facilities the process optimization by finite element simulations.","PeriodicalId":242571,"journal":{"name":"Superplasticity in Advanced Materials","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superplasticity in Advanced Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21741/9781644902615-29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. High-entropy alloy is a promising structural material for high-temperature service applications due to the designable superior properties. Superplasticity, normally achieved at relatively high temperature and low strain rate, enables difficult to formation materials to manufacture complex-shaped parts. This paper presents a feasibility experimental study on the deformation and microstructure of CoFeMnNi high-entropy alloy under hot deformation conditions with low strain rate. A series of hot uniaxial tests were conducted at the temperature range between 800-1000℃ with typical strain rates of 10-4 and 10-5/s to determine the stress-strain behaviours. Additionally, to understand the deformation mechanism, microstructure evolution after deformation was characterized. Finally, a mechanism based constitutive model of high-entropy alloy was developed, which facilities the process optimization by finite element simulations.