J Van Wauwe, M C Coene, G Van Nyen, W Cools, J Goossens, L Le Jeune, W Lauwers, P A Janssen
{"title":"NADPH-dependent formation of 15- and 12-hydroxyeicosatrienoic acid from arachidonic acid by rat epidermal microsomes.","authors":"J Van Wauwe, M C Coene, G Van Nyen, W Cools, J Goossens, L Le Jeune, W Lauwers, P A Janssen","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Rat epidermal microsomes were incubated with [1-14C]-arachidonic acid for 30 min at 37 degrees C in the absence and presence of NADPH. The arachidonate metabolites that eluted in the \"monohydroxy acid fraction\" on reverse-phase high performance liquid chromatography (HPLC) were methylated, purified by straight-phase HPLC and analyzed by chromatography with standard compounds, UV spectroscopy and/or gas chromatography-mass spectrometry (GC-MS). In the absence of NADPH, epidermal microsomes converted arachidonic acid to two major products identified as 15(S)-hydroxy-5,8,11,13-eicosatetraenoic acid (15(S)-HETE) and 12(S)-hydroxy-5,8,10,14-eicosatetraenoic acid (12(S)-HETE). In the presence of NADPH, the microsomal reaction produced, besides 15(S)- and 12(S)-HETE, two less polar metabolites which were characterized as 15-hydroxy-5,8,11,-eicosatrienoic acid (15-HETrE) and 12-hydroxy-5,8,14-eicosatrienoic acid (12-HETrE). Stereochemical analysis by chiral-phase HPLC showed that the biosynthesized 12-HETrE consisted of a mixture of optical isomers in a S/R ratio of 65:35. Formation of 15- and 12-HETrE was blocked by the mixed cyclooxygenase-lipoxygenase inhibitors quercetin and phenidone but was not affected by the cyclooxygenase inhibitor indomethacin or the cytochrome P-450 monooxygenase inhibitor metyrapone. These data indicate that rat epidermal microsomes, supplemented with NADPH, are capable of metabolizing arachidonic acid to 15- and 12-HETrE. The production of these compounds may be initiated by lipoxygenase-mediated hydroperoxidation of arachidonic acid.</p>","PeriodicalId":11520,"journal":{"name":"Eicosanoids","volume":"4 3","pages":"155-63"},"PeriodicalIF":0.0000,"publicationDate":"1991-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eicosanoids","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Rat epidermal microsomes were incubated with [1-14C]-arachidonic acid for 30 min at 37 degrees C in the absence and presence of NADPH. The arachidonate metabolites that eluted in the "monohydroxy acid fraction" on reverse-phase high performance liquid chromatography (HPLC) were methylated, purified by straight-phase HPLC and analyzed by chromatography with standard compounds, UV spectroscopy and/or gas chromatography-mass spectrometry (GC-MS). In the absence of NADPH, epidermal microsomes converted arachidonic acid to two major products identified as 15(S)-hydroxy-5,8,11,13-eicosatetraenoic acid (15(S)-HETE) and 12(S)-hydroxy-5,8,10,14-eicosatetraenoic acid (12(S)-HETE). In the presence of NADPH, the microsomal reaction produced, besides 15(S)- and 12(S)-HETE, two less polar metabolites which were characterized as 15-hydroxy-5,8,11,-eicosatrienoic acid (15-HETrE) and 12-hydroxy-5,8,14-eicosatrienoic acid (12-HETrE). Stereochemical analysis by chiral-phase HPLC showed that the biosynthesized 12-HETrE consisted of a mixture of optical isomers in a S/R ratio of 65:35. Formation of 15- and 12-HETrE was blocked by the mixed cyclooxygenase-lipoxygenase inhibitors quercetin and phenidone but was not affected by the cyclooxygenase inhibitor indomethacin or the cytochrome P-450 monooxygenase inhibitor metyrapone. These data indicate that rat epidermal microsomes, supplemented with NADPH, are capable of metabolizing arachidonic acid to 15- and 12-HETrE. The production of these compounds may be initiated by lipoxygenase-mediated hydroperoxidation of arachidonic acid.