A novel bagged particle filter for object tracking

Haozhi Huang, Yanyan Liang, A. Tsoi, Sio-Long Lo, A. Leung
{"title":"A novel bagged particle filter for object tracking","authors":"Haozhi Huang, Yanyan Liang, A. Tsoi, Sio-Long Lo, A. Leung","doi":"10.1145/3013971.3013997","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel bagged particle filter framework to filtering the noise information from object trackers using generative model as well as the discriminative model. The framework makes use of objectness measurement for modeling observation likelihood and two powerful object detectors: the real-time L1 tracker and the TLD tracker combined to bagged trackers. By maxmazing the posterior of the proposed inference, inaccuracy information is filtered and more accuracy result from varying samples returned by different trackers is provided by the bagged particle filter. The experiment results suggest that the proposed particle filter is effective in combing the complementary nature of either the sparse tracking approach and the discriminative learning approach.","PeriodicalId":269563,"journal":{"name":"Proceedings of the 15th ACM SIGGRAPH Conference on Virtual-Reality Continuum and Its Applications in Industry - Volume 1","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th ACM SIGGRAPH Conference on Virtual-Reality Continuum and Its Applications in Industry - Volume 1","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3013971.3013997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a novel bagged particle filter framework to filtering the noise information from object trackers using generative model as well as the discriminative model. The framework makes use of objectness measurement for modeling observation likelihood and two powerful object detectors: the real-time L1 tracker and the TLD tracker combined to bagged trackers. By maxmazing the posterior of the proposed inference, inaccuracy information is filtered and more accuracy result from varying samples returned by different trackers is provided by the bagged particle filter. The experiment results suggest that the proposed particle filter is effective in combing the complementary nature of either the sparse tracking approach and the discriminative learning approach.
一种用于目标跟踪的袋装粒子滤波器
本文提出了一种新的袋装粒子滤波框架,利用生成模型和判别模型对目标跟踪器中的噪声信息进行滤波。该框架利用目标测量来建模观测似然,并使用两种强大的目标检测器:实时L1跟踪器和与袋装跟踪器相结合的TLD跟踪器。通过最大化所提推理的后验值,过滤不准确的信息,并通过袋装粒子过滤器提供不同跟踪器返回的不同样本的更准确的结果。实验结果表明,所提出的粒子滤波器能够有效地结合稀疏跟踪方法和判别学习方法的互补性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信