Periodic Variance Maximization Using Generalized Eigenvalue Decomposition Applied to Remote Photoplethysmography Estimation

R. Macwan, Serge Bobbia, Y. Benezeth, Julien Dubois, A. Mansouri
{"title":"Periodic Variance Maximization Using Generalized Eigenvalue Decomposition Applied to Remote Photoplethysmography Estimation","authors":"R. Macwan, Serge Bobbia, Y. Benezeth, Julien Dubois, A. Mansouri","doi":"10.1109/CVPRW.2018.00181","DOIUrl":null,"url":null,"abstract":"A generic periodic variance maximization algorithm to extract periodic or quasi-periodic signals of unknown periods embedded into multi-channel temporal signal recordings is described in this paper. The algorithm combines the notion of maximizing a periodicity metric combined with the global optimization scheme to estimate the source periodic signal of an unknown period. The periodicity maximization is performed using Generalized Eigenvalue Decomposition (GEVD) and the global optimization is performed using tabu search. A case study of remote photoplethysmography signal estimation has been utilized to assess the performance of the method using videos from public databases UBFC-RPPG [1] and MMSE-HR [31]. The results confirm the improved performance over existing state of the art methods and the feasibility of the use of the method in a live scenario owing to its small execution time.","PeriodicalId":150600,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2018.00181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

A generic periodic variance maximization algorithm to extract periodic or quasi-periodic signals of unknown periods embedded into multi-channel temporal signal recordings is described in this paper. The algorithm combines the notion of maximizing a periodicity metric combined with the global optimization scheme to estimate the source periodic signal of an unknown period. The periodicity maximization is performed using Generalized Eigenvalue Decomposition (GEVD) and the global optimization is performed using tabu search. A case study of remote photoplethysmography signal estimation has been utilized to assess the performance of the method using videos from public databases UBFC-RPPG [1] and MMSE-HR [31]. The results confirm the improved performance over existing state of the art methods and the feasibility of the use of the method in a live scenario owing to its small execution time.
基于广义特征值分解的周期方差最大化方法在光体积脉搏波遥感估计中的应用
本文提出了一种通用的周期方差最大化算法,用于提取嵌入在多通道时间信号记录中的未知周期的周期或准周期信号。该算法将周期度量最大化的概念与全局优化方案相结合,对未知周期的源周期信号进行估计。利用广义特征值分解(GEVD)实现周期性最大化,利用禁忌搜索实现全局优化。利用UBFC-RPPG[1]和MMSE-HR[31]公共数据库中的视频,利用远程光容积脉搏波信号估计的案例研究来评估该方法的性能。结果证实了性能优于现有最先进的方法,并且由于执行时间短,该方法在现场场景中使用的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信