Jingzong Li, Libin Liu, Hongchang Xu, Shudeng Wu, Chun Jason Xue
{"title":"Cross-Camera Inference on the Constrained Edge","authors":"Jingzong Li, Libin Liu, Hongchang Xu, Shudeng Wu, Chun Jason Xue","doi":"10.1109/INFOCOM53939.2023.10229045","DOIUrl":null,"url":null,"abstract":"The proliferation of edge devices has pushed computing from the cloud to the data sources, and video analytics is among the most promising applications of edge computing. Running video analytics is compute- and latency-sensitive, as video frames are analyzed by complex deep neural networks (DNNs) which put severe pressure on resource-constrained edge devices. To resolve the tension between inference latency and resource cost, we present Polly, a cross-camera inference system that enables co-located cameras with different but overlapping fields of views (FoVs) to share inference results between one another, thus eliminating the redundant inference work for objects in the same physical area. Polly’s design solves two basic challenges of cross-camera inference: how to identify overlapping FoVs automatically, and how to share inference results accurately across cameras. Evaluation on NVIDIA Jetson Nano with a real-world traffic surveillance dataset shows that Polly reduces the inference latency by up to 71.4% while achieving almost the same detection accuracy with state-of-the-art systems.","PeriodicalId":387707,"journal":{"name":"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOM53939.2023.10229045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
The proliferation of edge devices has pushed computing from the cloud to the data sources, and video analytics is among the most promising applications of edge computing. Running video analytics is compute- and latency-sensitive, as video frames are analyzed by complex deep neural networks (DNNs) which put severe pressure on resource-constrained edge devices. To resolve the tension between inference latency and resource cost, we present Polly, a cross-camera inference system that enables co-located cameras with different but overlapping fields of views (FoVs) to share inference results between one another, thus eliminating the redundant inference work for objects in the same physical area. Polly’s design solves two basic challenges of cross-camera inference: how to identify overlapping FoVs automatically, and how to share inference results accurately across cameras. Evaluation on NVIDIA Jetson Nano with a real-world traffic surveillance dataset shows that Polly reduces the inference latency by up to 71.4% while achieving almost the same detection accuracy with state-of-the-art systems.