Two-Stage Stochastic Sizing of a Rural Micro-Grid Based on Stochastic Load Generation

N. Stevanato, F. Lombardi, Emanuela Colmbo, S. Balderrama, S. Quoilin
{"title":"Two-Stage Stochastic Sizing of a Rural Micro-Grid Based on Stochastic Load Generation","authors":"N. Stevanato, F. Lombardi, Emanuela Colmbo, S. Balderrama, S. Quoilin","doi":"10.1109/PTC.2019.8810571","DOIUrl":null,"url":null,"abstract":"Robust sizing of rural micro-grids is hindered by uncertainty associated with the expected load demand and its potential evolution over time. This study couples a stochastic load generation model with a two-stage stochastic micro-grid sizing model to take into account multiple probabilistic load scenarios within a single optimisation problem. As a result, the stochastic-optimal sizing of the system ensures an increased robustness to shocks in the expected load compared to a best-case (lowest-demand) sizing, though with a lower cost and better dispatch flexibility compared to a worst-case (highest-demand) sizing. What is more, allowing just a 1% unmet demand enables to significantly improve the cost-competitiveness and the renewables penetration as all the not supplied energy is located in a negligible fraction of the unlikeliest highest demand scenarios.","PeriodicalId":187144,"journal":{"name":"2019 IEEE Milan PowerTech","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Milan PowerTech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PTC.2019.8810571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Robust sizing of rural micro-grids is hindered by uncertainty associated with the expected load demand and its potential evolution over time. This study couples a stochastic load generation model with a two-stage stochastic micro-grid sizing model to take into account multiple probabilistic load scenarios within a single optimisation problem. As a result, the stochastic-optimal sizing of the system ensures an increased robustness to shocks in the expected load compared to a best-case (lowest-demand) sizing, though with a lower cost and better dispatch flexibility compared to a worst-case (highest-demand) sizing. What is more, allowing just a 1% unmet demand enables to significantly improve the cost-competitiveness and the renewables penetration as all the not supplied energy is located in a negligible fraction of the unlikeliest highest demand scenarios.
基于随机负荷生成的农村微电网两阶段随机扩容
与预期负荷需求及其随时间的潜在演变相关的不确定性阻碍了农村微电网的稳健规模。本研究将随机负荷生成模型与两阶段随机微电网规模模型相结合,以在单个优化问题中考虑多个概率负荷情景。因此,与最佳情况(最低需求)规模相比,系统的随机最优规模确保了在预期负载下对冲击的鲁棒性增加,尽管与最坏情况(最高需求)规模相比,成本更低,调度灵活性更好。更重要的是,仅仅允许1%的未满足需求就能显著提高成本竞争力和可再生能源的渗透率,因为所有未供应的能源都位于最不可能的最高需求情景的微不足道的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信