Unsupervised Alignment of Distributional Word Embeddings

Aïssatou Diallo
{"title":"Unsupervised Alignment of Distributional Word Embeddings","authors":"Aïssatou Diallo","doi":"10.48550/arXiv.2203.04863","DOIUrl":null,"url":null,"abstract":"Cross-domain alignment play a key roles in tasks ranging from machine translation to transfer learning. Recently, purely unsupervised methods operating on monolingual embeddings have successfully been used to infer a bilingual lexicon without relying on supervision. However, current state-of-the art methods only focus on point vectors although distributional embeddings have proven to embed richer semantic information when representing words. In this paper, we propose stochastic optimization approach for aligning probabilistic embeddings. Finally, we evaluate our method on the problem of unsupervised word translation, by aligning word embeddings trained on monolingual data. We show that the proposed approach achieves good performance on the bilingual lexicon induction task across several language pairs and performs better than the point-vector based approach.","PeriodicalId":303369,"journal":{"name":"Deutsche Jahrestagung für Künstliche Intelligenz","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Deutsche Jahrestagung für Künstliche Intelligenz","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2203.04863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cross-domain alignment play a key roles in tasks ranging from machine translation to transfer learning. Recently, purely unsupervised methods operating on monolingual embeddings have successfully been used to infer a bilingual lexicon without relying on supervision. However, current state-of-the art methods only focus on point vectors although distributional embeddings have proven to embed richer semantic information when representing words. In this paper, we propose stochastic optimization approach for aligning probabilistic embeddings. Finally, we evaluate our method on the problem of unsupervised word translation, by aligning word embeddings trained on monolingual data. We show that the proposed approach achieves good performance on the bilingual lexicon induction task across several language pairs and performs better than the point-vector based approach.
分布词嵌入的无监督对齐
跨域对齐在从机器翻译到迁移学习等任务中发挥着关键作用。近年来,基于单语嵌入的纯无监督方法已经成功地用于不依赖监督的双语词典推断。然而,目前最先进的方法只关注点向量,尽管分布嵌入已经被证明在表示单词时嵌入了更丰富的语义信息。在本文中,我们提出了随机优化方法来对齐概率嵌入。最后,我们通过对齐在单语数据上训练的词嵌入来评估我们在无监督词翻译问题上的方法。结果表明,该方法在跨多个语言对的双语词汇归纳任务中取得了较好的效果,并且优于基于点向量的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信