Epilepsy seizure detection using SWT features and ANN classifier

Felicia J Mercy, J. Prasanna, G. S. Thomas, Roseline S Belvina, Glory N Evangelin, J. Mabel
{"title":"Epilepsy seizure detection using SWT features and ANN classifier","authors":"Felicia J Mercy, J. Prasanna, G. S. Thomas, Roseline S Belvina, Glory N Evangelin, J. Mabel","doi":"10.1109/ICSPC46172.2019.8976834","DOIUrl":null,"url":null,"abstract":"Epilepsy is a common life-threatening neurological disorder, which is unpredictable and affects around 50 million people worldwide. Electroencephalography (EEG) is a monitoring method used to diagnose epilepsy. It records fluctuations in electrical activities of brain. In this study, Stationary Wavelet Transform (SWT) is used to analyse the EEG signal for classification of focal and normal EEG signal. SWT decomposes EEG signal into approximate and detailed coefficients. From each coefficient the statistical features are extracted and are fed into Artificial Neural Network (ANN) classifier for the discrimination of focal and normal EEG signal. These methods are verified by using Karunya EEG database. This method is achieved an overall accuracy of 98.75%, sensitivity of 98.39%, specificity of 99.16%, positive predictive value (PPV) of 99.16%, negative predictive value (NPV) of 98.33%.","PeriodicalId":321652,"journal":{"name":"2019 2nd International Conference on Signal Processing and Communication (ICSPC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 2nd International Conference on Signal Processing and Communication (ICSPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPC46172.2019.8976834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Epilepsy is a common life-threatening neurological disorder, which is unpredictable and affects around 50 million people worldwide. Electroencephalography (EEG) is a monitoring method used to diagnose epilepsy. It records fluctuations in electrical activities of brain. In this study, Stationary Wavelet Transform (SWT) is used to analyse the EEG signal for classification of focal and normal EEG signal. SWT decomposes EEG signal into approximate and detailed coefficients. From each coefficient the statistical features are extracted and are fed into Artificial Neural Network (ANN) classifier for the discrimination of focal and normal EEG signal. These methods are verified by using Karunya EEG database. This method is achieved an overall accuracy of 98.75%, sensitivity of 98.39%, specificity of 99.16%, positive predictive value (PPV) of 99.16%, negative predictive value (NPV) of 98.33%.
基于SWT特征和ANN分类器的癫痫发作检测
癫痫是一种常见的危及生命的神经系统疾病,它是不可预测的,影响着全世界约5000万人。脑电图(EEG)是一种用于诊断癫痫的监测方法。它记录大脑电活动的波动。本研究采用平稳小波变换(SWT)对脑电信号进行分析,对病灶和正常脑电信号进行分类。SWT将脑电信号分解为近似系数和详细系数。从每个系数中提取统计特征,并将其输入到人工神经网络(ANN)分类器中,用于区分病灶和正常脑电信号。利用Karunya EEG数据库对这些方法进行了验证。该方法总体准确率为98.75%,灵敏度为98.39%,特异性为99.16%,阳性预测值(PPV)为99.16%,阴性预测值(NPV)为98.33%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信