Hardware-Aware Zero-Shot Neural Architecture Search

Yutaka Yoshihama, Kenichi Yadani, Shota Isobe
{"title":"Hardware-Aware Zero-Shot Neural Architecture Search","authors":"Yutaka Yoshihama, Kenichi Yadani, Shota Isobe","doi":"10.23919/MVA57639.2023.10216205","DOIUrl":null,"url":null,"abstract":"Designing a convolutional neural network architecture that achieves low-latency and high accuracy on edge devices with constrained computational resources is a difficult challenge. Neural architecture search (NAS) is used to optimize the architecture in a large design space, but at huge computational cost. As a countermeasure, we use here the zero-shot NAS method. A drawback to the previous method was that a discrepancy of correction occurred between the evaluation score of the neural architecture and its accuracy. To address this problem, we refined the neural architecture search space from previous zero-shot NAS. The neural architecture obtained using the proposed method achieves ImageNet top-1 accuracy of 75.3% under conditions of latency equivalent to MobileNetV2 (ImageNet top-1 accuracy is 71.8%) on the Qualcomm SA8155 platform.","PeriodicalId":338734,"journal":{"name":"2023 18th International Conference on Machine Vision and Applications (MVA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 18th International Conference on Machine Vision and Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA57639.2023.10216205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Designing a convolutional neural network architecture that achieves low-latency and high accuracy on edge devices with constrained computational resources is a difficult challenge. Neural architecture search (NAS) is used to optimize the architecture in a large design space, but at huge computational cost. As a countermeasure, we use here the zero-shot NAS method. A drawback to the previous method was that a discrepancy of correction occurred between the evaluation score of the neural architecture and its accuracy. To address this problem, we refined the neural architecture search space from previous zero-shot NAS. The neural architecture obtained using the proposed method achieves ImageNet top-1 accuracy of 75.3% under conditions of latency equivalent to MobileNetV2 (ImageNet top-1 accuracy is 71.8%) on the Qualcomm SA8155 platform.
硬件感知零射击神经结构搜索
在计算资源有限的边缘设备上设计一种低延迟、高精度的卷积神经网络架构是一项艰巨的挑战。神经结构搜索(Neural architecture search, NAS)用于在大的设计空间内优化结构,但计算成本巨大。作为一种对策,我们在这里使用零射击NAS方法。先前方法的缺点是神经结构的评价分数与其精度之间存在校正误差。为了解决这个问题,我们从之前的零采样NAS中改进了神经结构搜索空间。在与高通SA8155平台上的MobileNetV2 (ImageNet top-1精度为71.8%)相当的延迟条件下,使用该方法获得的神经网络架构实现了75.3%的ImageNet top-1精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信