PREDIKSI HUJAN BULANAN PADA PERIODE ENSO (El NINO SOUTHERN OSCILLATION) MENGGUNAKAN ANFIS (ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM) DI BANJARMANGU, BANJARNEGARA

Agus Safril, Fakhrul Kurniawan, Rista Hernandi Virgianto
{"title":"PREDIKSI HUJAN BULANAN PADA PERIODE ENSO (El NINO SOUTHERN OSCILLATION) MENGGUNAKAN ANFIS (ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM) DI BANJARMANGU, BANJARNEGARA","authors":"Agus Safril, Fakhrul Kurniawan, Rista Hernandi Virgianto","doi":"10.29122/jstmc.v21i1.4028","DOIUrl":null,"url":null,"abstract":"Akurasi prediksi curah hujan yang tinggi diperlukan untuk mendapatkan informasi yang tepat dan bermanfaat untuk tindakan mitigasi bencana alam oleh masyarakat. Untuk mendapatkan akurasi yang tinggi diperlukan variabel prediktor yang secara fisis terkait erat dengan curah hujan dan dapat menangkap pola anomali curah hujan akibat El Ni?o Southern Oscillation (ENSO). Total Column Water (TCW) sebagai variabel prediktor yang dipilih merupakan potensi uap air di atmosfer yang berpeluang menjadi hujan yang jatuh di permukaan bumi. Data TCW merupakan data reanalisis Model Sirkulasi Global (Global Circulation Model) yang diambil dari European Centre for Medium-Range Weather Forecasts (ECMWF). Analisis korelasi dilakukan untuk mendapatkan tingkat keterhubungan antara prediktor dengan curah hujan. Model prediksi Adaptive Neuro Fuzzy Inference System (ANFIS) digunakan untuk memprediksi curah hujan yang bersifat chaotic. Hasil penelitian menunjukkan pola klimatologis prediktor TCW sesuai pola curah hujan klimatologis dengan kekuatan relasi (r) 0,79. Hasil penelitian menunjukkan pola klimatologis prediktor TCW mengikuti pola curah hujan klimatologis dengan kekuatan relasi r(0,79) pada skala bulanan dan r(0,73) pada skala dasarian. Korelasi antara prediksi dan curah hujan observasi sebesar 0,82. Korelasi paling rendah pada saat terjadi pola Normal, El Ni?o dan La Ni?a pada tahun 2016 yakni 0,69, diikuti tahun 2014 saat Fase Normal dan El Ni?o sebesar 0,77, dan saat El Ni?o dominan mencapai korelasi tertinggi yaitu 0,93 di tahun 2015. Pada prediksi hujan skala dasarian menunjukkan tingkat keandalan yang tidak jauh berbeda dengan prediksi hujan bulanan dengan nilai r(0,65) pada periode La Ni?a dan r(0,80) pada periode El Ni?o.","PeriodicalId":353176,"journal":{"name":"Jurnal Sains & Teknologi Modifikasi Cuaca","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Sains & Teknologi Modifikasi Cuaca","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29122/jstmc.v21i1.4028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Akurasi prediksi curah hujan yang tinggi diperlukan untuk mendapatkan informasi yang tepat dan bermanfaat untuk tindakan mitigasi bencana alam oleh masyarakat. Untuk mendapatkan akurasi yang tinggi diperlukan variabel prediktor yang secara fisis terkait erat dengan curah hujan dan dapat menangkap pola anomali curah hujan akibat El Ni?o Southern Oscillation (ENSO). Total Column Water (TCW) sebagai variabel prediktor yang dipilih merupakan potensi uap air di atmosfer yang berpeluang menjadi hujan yang jatuh di permukaan bumi. Data TCW merupakan data reanalisis Model Sirkulasi Global (Global Circulation Model) yang diambil dari European Centre for Medium-Range Weather Forecasts (ECMWF). Analisis korelasi dilakukan untuk mendapatkan tingkat keterhubungan antara prediktor dengan curah hujan. Model prediksi Adaptive Neuro Fuzzy Inference System (ANFIS) digunakan untuk memprediksi curah hujan yang bersifat chaotic. Hasil penelitian menunjukkan pola klimatologis prediktor TCW sesuai pola curah hujan klimatologis dengan kekuatan relasi (r) 0,79. Hasil penelitian menunjukkan pola klimatologis prediktor TCW mengikuti pola curah hujan klimatologis dengan kekuatan relasi r(0,79) pada skala bulanan dan r(0,73) pada skala dasarian. Korelasi antara prediksi dan curah hujan observasi sebesar 0,82. Korelasi paling rendah pada saat terjadi pola Normal, El Ni?o dan La Ni?a pada tahun 2016 yakni 0,69, diikuti tahun 2014 saat Fase Normal dan El Ni?o sebesar 0,77, dan saat El Ni?o dominan mencapai korelasi tertinggi yaitu 0,93 di tahun 2015. Pada prediksi hujan skala dasarian menunjukkan tingkat keandalan yang tidak jauh berbeda dengan prediksi hujan bulanan dengan nilai r(0,65) pada periode La Ni?a dan r(0,80) pada periode El Ni?o.
为了获得社会的准确和有益的信息,需要对降雨预测的准确性。为了获得高准确性,需要变量预测器,这些变量与降水密切相关,能够捕捉到El Ni引起的降水异常模式吗?o南方Oscillation (ENSO)。总水位(TCW)作为选定的预测变量,构成了大气中的水蒸气有可能在地球表面下雨。TCW数据是一种全球循环模型的数据分析,这种数据是从欧洲中区气象前体中提取的。进行相关性分析,以获得预测器和降水之间的相关性水平。预测模型模型是用来预测混乱的降水。研究结果显示,TCW可预测气候预测模式与关系强度为0.79的气候降水模式一致(r)。研究结果显示,TCW预测气候模式遵循每月表面积为r(0.79)的klimatologists模式,在达序尺度上为r(0.73),在达序尺度上为r(0.73)。预测与降雨量观测之间的相关性为0.82。当正常模式发生时,相关性最低,El Ni?奥拉尼?a在2016年是0,69年,然后是2014年的正常相位和El Ni?0除以77,当El Ni呢?o占主导地位的最高相关性是2015年的0.93。关于达萨里安降雨预测的可靠性,与洛杉矶时期r(0.65)的月雨预测相差不远。厄尔时期的a和r ?
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信