A novel evolutionary algorithm for block-based neural network training

A. Niknam, P. Hoseini, B. Mashoufi, A. Khoei
{"title":"A novel evolutionary algorithm for block-based neural network training","authors":"A. Niknam, P. Hoseini, B. Mashoufi, A. Khoei","doi":"10.1109/PRIA.2013.6528434","DOIUrl":null,"url":null,"abstract":"A novel evolutionary algorithm with fixed genetic parameters rate have presented for block-based neural network (BbNN) training. This algorithm can be used in BbNN training which faces complicated problems such as simulation of equations, classification of signals, image processing and implementation of logic gates and so on. The fixed structure of our specific BbNN allows us to implement the trained network by a fixed circuit rather than utilizing a reconfigurable hardware which is usually employed in conventional designs. Avoiding the reconfigurable hardware leads to lower power consumption and chip area. All simulations are performed in MATLAB software.","PeriodicalId":370476,"journal":{"name":"2013 First Iranian Conference on Pattern Recognition and Image Analysis (PRIA)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 First Iranian Conference on Pattern Recognition and Image Analysis (PRIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRIA.2013.6528434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

A novel evolutionary algorithm with fixed genetic parameters rate have presented for block-based neural network (BbNN) training. This algorithm can be used in BbNN training which faces complicated problems such as simulation of equations, classification of signals, image processing and implementation of logic gates and so on. The fixed structure of our specific BbNN allows us to implement the trained network by a fixed circuit rather than utilizing a reconfigurable hardware which is usually employed in conventional designs. Avoiding the reconfigurable hardware leads to lower power consumption and chip area. All simulations are performed in MATLAB software.
一种新的基于块的神经网络训练进化算法
针对基于块的神经网络(BbNN)训练,提出了一种具有固定遗传参数率的进化算法。该算法可用于BbNN训练中遇到的方程模拟、信号分类、图像处理、逻辑门实现等复杂问题。我们特定BbNN的固定结构允许我们通过固定电路实现训练后的网络,而不是使用传统设计中通常使用的可重构硬件。避免可重构硬件导致更低的功耗和芯片面积。所有仿真均在MATLAB软件中进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信