{"title":"CRUCIBLE: towards unified secure on- and off-line analytics at scale","authors":"Peter Coetzee, S. Jarvis","doi":"10.1145/2534645.2534649","DOIUrl":null,"url":null,"abstract":"The burgeoning field of data science benefits from the application of a variety of analytic models and techniques to the oft-cited problems of large volume, high velocity data rates, and significant variety in data structure and semantics. Many approaches make use of common analytic techniques in either a streaming or batch processing paradigm.\n This paper presents progress in developing a framework for the analysis of large-scale datasets using both of these pools of techniques in a unified manner. This includes: (1) a Domain Specific Language (DSL) for describing analyses as a set of Communicating Sequential Processes, fully integrated with the Java type system, including an Integrated Development Environment (IDE) and a compiler which builds idiomatic Java; (2) a runtime model for execution of an analytic in both streaming and batch environments; and (3) a novel approach to automated management of cell-level security labels, applied uniformly across all runtimes.\n The paper concludes with a demonstration of the successful use of this system with a sample workload developed in (1), and an analysis of the performance characteristics of each of the runtimes described in (2).","PeriodicalId":166804,"journal":{"name":"International Symposium on Design and Implementation of Symbolic Computation Systems","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Design and Implementation of Symbolic Computation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2534645.2534649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The burgeoning field of data science benefits from the application of a variety of analytic models and techniques to the oft-cited problems of large volume, high velocity data rates, and significant variety in data structure and semantics. Many approaches make use of common analytic techniques in either a streaming or batch processing paradigm.
This paper presents progress in developing a framework for the analysis of large-scale datasets using both of these pools of techniques in a unified manner. This includes: (1) a Domain Specific Language (DSL) for describing analyses as a set of Communicating Sequential Processes, fully integrated with the Java type system, including an Integrated Development Environment (IDE) and a compiler which builds idiomatic Java; (2) a runtime model for execution of an analytic in both streaming and batch environments; and (3) a novel approach to automated management of cell-level security labels, applied uniformly across all runtimes.
The paper concludes with a demonstration of the successful use of this system with a sample workload developed in (1), and an analysis of the performance characteristics of each of the runtimes described in (2).