Image classification based on log-Euclidean Fisher Vectors for covariance matrix descriptors

Sara Akodad, L. Bombrun, C. Yaacoub, Y. Berthoumieu, C. Germain
{"title":"Image classification based on log-Euclidean Fisher Vectors for covariance matrix descriptors","authors":"Sara Akodad, L. Bombrun, C. Yaacoub, Y. Berthoumieu, C. Germain","doi":"10.1109/IPTA.2018.8608154","DOIUrl":null,"url":null,"abstract":"This paper introduces an image classification method based on the encoding of a set of covariance matrices. This encoding relies on Fisher vectors adapted to the log-Euclidean metric: the log-Euclidean Fisher vectors (LE FV). This approach is next extended to full local Gaussian descriptors composed by a set of local mean vectors and local covariance matrices. For that, the local Gaussian model is transformed to a zero-mean Gaussian model with an augmented covariance matrix. All these approaches are used to encode handcrafted or deep learning features. Finally, they are applied in a remote sensing application on the UC Merced dataset which consists in classifying land cover images. A sensitivity analysis is carried out to evaluate the potential of the proposed LE FV.","PeriodicalId":272294,"journal":{"name":"2018 Eighth International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Eighth International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2018.8608154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper introduces an image classification method based on the encoding of a set of covariance matrices. This encoding relies on Fisher vectors adapted to the log-Euclidean metric: the log-Euclidean Fisher vectors (LE FV). This approach is next extended to full local Gaussian descriptors composed by a set of local mean vectors and local covariance matrices. For that, the local Gaussian model is transformed to a zero-mean Gaussian model with an augmented covariance matrix. All these approaches are used to encode handcrafted or deep learning features. Finally, they are applied in a remote sensing application on the UC Merced dataset which consists in classifying land cover images. A sensitivity analysis is carried out to evaluate the potential of the proposed LE FV.
基于对数欧氏费雪向量协方差矩阵描述符的图像分类
介绍了一种基于协方差矩阵编码的图像分类方法。这种编码依赖于适合对数欧几里得度量的Fisher向量:对数欧几里得Fisher向量(LE FV)。然后将该方法扩展到由一组局部均值向量和局部协方差矩阵组成的全局部高斯描述子。为此,将局部高斯模型转化为具有增广协方差矩阵的零均值高斯模型。所有这些方法都用于对手工或深度学习特征进行编码。最后,将它们应用于UC Merced数据集的遥感应用,该数据集包括对土地覆盖图像进行分类。进行了敏感性分析,以评估拟议的LE FV的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信