Sara Akodad, L. Bombrun, C. Yaacoub, Y. Berthoumieu, C. Germain
{"title":"Image classification based on log-Euclidean Fisher Vectors for covariance matrix descriptors","authors":"Sara Akodad, L. Bombrun, C. Yaacoub, Y. Berthoumieu, C. Germain","doi":"10.1109/IPTA.2018.8608154","DOIUrl":null,"url":null,"abstract":"This paper introduces an image classification method based on the encoding of a set of covariance matrices. This encoding relies on Fisher vectors adapted to the log-Euclidean metric: the log-Euclidean Fisher vectors (LE FV). This approach is next extended to full local Gaussian descriptors composed by a set of local mean vectors and local covariance matrices. For that, the local Gaussian model is transformed to a zero-mean Gaussian model with an augmented covariance matrix. All these approaches are used to encode handcrafted or deep learning features. Finally, they are applied in a remote sensing application on the UC Merced dataset which consists in classifying land cover images. A sensitivity analysis is carried out to evaluate the potential of the proposed LE FV.","PeriodicalId":272294,"journal":{"name":"2018 Eighth International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Eighth International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2018.8608154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This paper introduces an image classification method based on the encoding of a set of covariance matrices. This encoding relies on Fisher vectors adapted to the log-Euclidean metric: the log-Euclidean Fisher vectors (LE FV). This approach is next extended to full local Gaussian descriptors composed by a set of local mean vectors and local covariance matrices. For that, the local Gaussian model is transformed to a zero-mean Gaussian model with an augmented covariance matrix. All these approaches are used to encode handcrafted or deep learning features. Finally, they are applied in a remote sensing application on the UC Merced dataset which consists in classifying land cover images. A sensitivity analysis is carried out to evaluate the potential of the proposed LE FV.