An unsupervised learning approach to social circles detection in ego bluetooth proximity network

Jiangchuan Zheng, L. Ni
{"title":"An unsupervised learning approach to social circles detection in ego bluetooth proximity network","authors":"Jiangchuan Zheng, L. Ni","doi":"10.1145/2493432.2493512","DOIUrl":null,"url":null,"abstract":"Understanding a user's social interactions in the physical world proves important in building context-aware ubiquitous applications. A good way towards that objective is to categorize people to whom a user is socially related into what we call as social circles. In this note, we propose a novel unsupervised approach that learns from the Bluetooth (BT) sensed data recording one's dynamic proximity relations with others to identify her social circles, each of which is formed along a semantically coherent aspect. For each circle we learn its members as well as the temporal dimensions along which it is formed. Our method is innovative in that it well overcomes data sparsity by information sharing, and allows for circle overlaps which is common in reality. Experiments on real data demonstrate the effectiveness of our method, and also show the potentials of relational mobile data in sensing personal behaviors beyond personal data.","PeriodicalId":262104,"journal":{"name":"Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2493432.2493512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Understanding a user's social interactions in the physical world proves important in building context-aware ubiquitous applications. A good way towards that objective is to categorize people to whom a user is socially related into what we call as social circles. In this note, we propose a novel unsupervised approach that learns from the Bluetooth (BT) sensed data recording one's dynamic proximity relations with others to identify her social circles, each of which is formed along a semantically coherent aspect. For each circle we learn its members as well as the temporal dimensions along which it is formed. Our method is innovative in that it well overcomes data sparsity by information sharing, and allows for circle overlaps which is common in reality. Experiments on real data demonstrate the effectiveness of our method, and also show the potentials of relational mobile data in sensing personal behaviors beyond personal data.
自我蓝牙邻近网络社交圈检测的无监督学习方法
理解用户在物理世界中的社会交互对于构建上下文感知的无处不在的应用程序非常重要。实现这一目标的一个好方法是将与用户有社会关系的人划分为我们所说的社交圈。在本文中,我们提出了一种新的无监督方法,该方法从蓝牙(BT)感知数据中学习,记录一个人与他人的动态接近关系,以识别她的社交圈,每个社交圈都是沿着语义连贯的方面形成的。对于每个圆,我们知道它的成员以及它形成的时间维度。我们的方法是创新的,因为它通过信息共享很好地克服了数据稀疏性,并允许在现实中常见的圆重叠。在真实数据上的实验证明了我们的方法的有效性,也显示了关系移动数据在感知个人数据以外的个人行为方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信