{"title":"Witt rings of quadratically presentable fields","authors":"Paweł Gładki, K. Worytkiewicz","doi":"10.29252/CGASA.12.1.1","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel approach to the axiomatic theory of quadratic forms. We work internally in a category of certain partially ordered sets, subject to additional conditions which amount to a strong form of local presentability. We call such partial orders presentable. It turns out that the classical notion of the Witt ring of symmetric bilinear forms over a field makes sense in the context of quadratically presentable fields, that is fields equipped with a presentable partial order inequationaly compatible with the algebraic operations. As an application, we show that Witt rings of symmetric bilinear forms over fields, of both characteristic 2 and not 2, are isomorphic to Witt rings of suitably built quadratically presentable fields, which therefore provide a uniform construction of Witt rings for all characteristics.","PeriodicalId":170235,"journal":{"name":"Categories and General Algebraic Structures with Application","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Categories and General Algebraic Structures with Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29252/CGASA.12.1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
This paper introduces a novel approach to the axiomatic theory of quadratic forms. We work internally in a category of certain partially ordered sets, subject to additional conditions which amount to a strong form of local presentability. We call such partial orders presentable. It turns out that the classical notion of the Witt ring of symmetric bilinear forms over a field makes sense in the context of quadratically presentable fields, that is fields equipped with a presentable partial order inequationaly compatible with the algebraic operations. As an application, we show that Witt rings of symmetric bilinear forms over fields, of both characteristic 2 and not 2, are isomorphic to Witt rings of suitably built quadratically presentable fields, which therefore provide a uniform construction of Witt rings for all characteristics.