Rates of convergence in the source coding theorem, in empirical quantizer design, and in universal lossy source coding

T. Linder, G. Lugosi, K. Zeger
{"title":"Rates of convergence in the source coding theorem, in empirical quantizer design, and in universal lossy source coding","authors":"T. Linder, G. Lugosi, K. Zeger","doi":"10.1109/ISIT.1994.395069","DOIUrl":null,"url":null,"abstract":"Rates of convergence results are established for vector quantization. Convergence rates are given for an increasing vector dimension and/or an increasing training set size. In particular, the following results are shown for memoryless real valued sources with bounded support at transmission rate R. (1) If a vector quantizer with fixed dimension k is designed to minimize the empirical MSE with respect to m training vectors, then its MSE for the true source converges almost surely to the minimum possible MSE as O(/spl radic/(log m/m)); (2) The MSE of an optimal k-dimensional vector quantizer for the true source converges, as the dimension grows, to the distortion-rate function D(R) as O(/spl radic/(log k/k)); (3) There exists a fixed rate universal lossy source coding scheme whose per letter MSE on n real valued source samples converges almost surely to the distortion-rate function D(R) as O(/spl radic/(log log n/log n)); and (4) Consider a training set of n real valued source samples blocked into vectors of dimension k, and a k-dimensional vector quantizer designed to minimize the empirical MSE with respect to the m=[n/k] training vectors. Then the MSE of this quantizer for the true source converges almost surely to the distortion-rate function D(R) as O(/spl radic/(log log n/log n)), if one chooses k=[1/R(1-/spl epsiv/)(log n)] /spl forall//spl epsiv/ /spl epsiv/(0,1).<<ETX>>","PeriodicalId":331390,"journal":{"name":"Proceedings of 1994 IEEE International Symposium on Information Theory","volume":"1667 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"130","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.1994.395069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 130

Abstract

Rates of convergence results are established for vector quantization. Convergence rates are given for an increasing vector dimension and/or an increasing training set size. In particular, the following results are shown for memoryless real valued sources with bounded support at transmission rate R. (1) If a vector quantizer with fixed dimension k is designed to minimize the empirical MSE with respect to m training vectors, then its MSE for the true source converges almost surely to the minimum possible MSE as O(/spl radic/(log m/m)); (2) The MSE of an optimal k-dimensional vector quantizer for the true source converges, as the dimension grows, to the distortion-rate function D(R) as O(/spl radic/(log k/k)); (3) There exists a fixed rate universal lossy source coding scheme whose per letter MSE on n real valued source samples converges almost surely to the distortion-rate function D(R) as O(/spl radic/(log log n/log n)); and (4) Consider a training set of n real valued source samples blocked into vectors of dimension k, and a k-dimensional vector quantizer designed to minimize the empirical MSE with respect to the m=[n/k] training vectors. Then the MSE of this quantizer for the true source converges almost surely to the distortion-rate function D(R) as O(/spl radic/(log log n/log n)), if one chooses k=[1/R(1-/spl epsiv/)(log n)] /spl forall//spl epsiv/ /spl epsiv/(0,1).<>
源编码定理中的收敛速度,经验量化器设计,以及通用有损源编码
建立了矢量量化的收敛速率结果。给出了向量维数增加和/或训练集大小增加时的收敛率。特别是,以下结果显示了在传输速率r下具有有限支持的无记忆实值源(1)如果设计一个固定维数k的矢量量化器来最小化相对于m个训练向量的经验MSE,那么它对于真实源的MSE几乎肯定收敛到最小可能的MSE为O(/spl径向/(log m/m));(2)对于真源,最优k维矢量量化器的MSE随着维数的增加收敛到失真率函数D(R)为0 (/spl radial /(log k/k));(3)存在一种固定速率的通用有损源编码方案,其在n个实值源样本上的每字母MSE几乎肯定地收敛于失真率函数D(R)为O(/spl radial /(log log n/log n));(4)考虑一个由n个实值源样本组成的训练集,这些样本被分割成k维向量,以及一个k维向量量化器,该量化器旨在最小化相对于m=[n/k]个训练向量的经验均方差。如果选择k=[1/R(1-/spl epsiv/)(log n/log n)] /spl forall//spl epsiv/ /spl epsiv/(0,1)],则该量化器的MSE几乎肯定收敛于失真率函数D(R)为O(/spl radig /(log log n/log n))。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信