Jasper Kirton-Wingate, Shafique Ahmed, M. Gogate, Yu-sheng Tsao, Amir Hussain
{"title":"Towards Individualised Speech Enhancement: An SNR Preference Learning System for Multi-Modal Hearing Aids","authors":"Jasper Kirton-Wingate, Shafique Ahmed, M. Gogate, Yu-sheng Tsao, Amir Hussain","doi":"10.1109/ICASSPW59220.2023.10193122","DOIUrl":null,"url":null,"abstract":"Since the advent of deep learning (DL), speech enhancement (SE) models have performed well under a variety of noise conditions. However, such systems may still introduce sonic artefacts, sound unnatural, and restrict the ability for a user to hear ambient sound which may be of importance. Hearing Aid (HA) users may wish to customise their SE systems to suit their personal preferences and day-to-day lifestyle. In this paper, we introduce a preference learning based SE (PLSE) model for future multi-modal HAs that can contextually exploit audio and visual information to improve listening comfort (LC). The proposed system estimates the Signal-to-noise ratio (SNR) as a basic objective speech quality measure which quantifies the relative amount of background noise present in speech, and directly correlates to the intelligibility of the signal. This is used alongside a preference elicitation framework which learns a predictive function to determine the target SNR. The system is novel, scaling the output of an AudioVisual (AV) DL-based SE model to provide HA users with individualised SE. Preliminary results support the hypothesis of improving the overall subjective LC, without significantly impeding the speech intelligibility.","PeriodicalId":158726,"journal":{"name":"2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSPW59220.2023.10193122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Since the advent of deep learning (DL), speech enhancement (SE) models have performed well under a variety of noise conditions. However, such systems may still introduce sonic artefacts, sound unnatural, and restrict the ability for a user to hear ambient sound which may be of importance. Hearing Aid (HA) users may wish to customise their SE systems to suit their personal preferences and day-to-day lifestyle. In this paper, we introduce a preference learning based SE (PLSE) model for future multi-modal HAs that can contextually exploit audio and visual information to improve listening comfort (LC). The proposed system estimates the Signal-to-noise ratio (SNR) as a basic objective speech quality measure which quantifies the relative amount of background noise present in speech, and directly correlates to the intelligibility of the signal. This is used alongside a preference elicitation framework which learns a predictive function to determine the target SNR. The system is novel, scaling the output of an AudioVisual (AV) DL-based SE model to provide HA users with individualised SE. Preliminary results support the hypothesis of improving the overall subjective LC, without significantly impeding the speech intelligibility.