S. Kharchenko, V. Golosov, A. Tsyplenkov, A. Fedin, M. Uspensky
{"title":"RATES OF MODERN DENUDATION OF A SMALL CATCHMENT IN THE MIDDLE MOUNTAIN BELT OF THE GREATER CAUCASUS (CASE STUDY OF THE GITCHE-GIZHGIT CATCHMENT)","authors":"S. Kharchenko, V. Golosov, A. Tsyplenkov, A. Fedin, M. Uspensky","doi":"10.55959/msu0579-9414.5.78.3.4","DOIUrl":null,"url":null,"abstract":"The volumes of loose-clastic material moved by modern earth surface processes were quantified for a small mid-mountain catchment area ( F = 1,86 km2), located in the Baksan River basin using a number of independent methods (modeling of erosion and geomorphologic mapping). The total volume of removed material was estimated through the assessment of the thickness of bottom sediments accumulated in a reservoir located in the outlet section of the catchment area. The rates of linear and rill erosion have been found using the results of repeated UAV surveys and the pin method. The rates of rockfall processes are estimated on the basis of repeated ground-based laser scanning. Additionally, published data on the rates of earth surface processes in the mountains were used. Based on the results of field mapping and interpretation of space images, a map of the spatial pattern of leading earth surface processes was compiled. A digital terrain model of the catchment was constructed on the basis of detailed UAV survey. The volume of loose clastic material delivered to the reservoir was estimated using data on the average annual rates of leading earth surface processes, a map of their distribution over the catchment area, and the connectivity index. It has been established that the average annual denudation rate within the catchment area is 0,16 mm/year. At the same time, only about 3-10% of the products of denudation are delivered to the reservoir. The sediment yield, calculated on the basis of the volume of sediments in the reservoir, is 514 t/km2 per year. It is comparable to the sediment yield of small rivers draining the mid-mountain belt of the Alps with similar bedrock lithology, which was calculated using the results of long-term observations of water and sediment discharge at gauging stations.","PeriodicalId":158808,"journal":{"name":"Lomonosov Geography Journal","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lomonosov Geography Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55959/msu0579-9414.5.78.3.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The volumes of loose-clastic material moved by modern earth surface processes were quantified for a small mid-mountain catchment area ( F = 1,86 km2), located in the Baksan River basin using a number of independent methods (modeling of erosion and geomorphologic mapping). The total volume of removed material was estimated through the assessment of the thickness of bottom sediments accumulated in a reservoir located in the outlet section of the catchment area. The rates of linear and rill erosion have been found using the results of repeated UAV surveys and the pin method. The rates of rockfall processes are estimated on the basis of repeated ground-based laser scanning. Additionally, published data on the rates of earth surface processes in the mountains were used. Based on the results of field mapping and interpretation of space images, a map of the spatial pattern of leading earth surface processes was compiled. A digital terrain model of the catchment was constructed on the basis of detailed UAV survey. The volume of loose clastic material delivered to the reservoir was estimated using data on the average annual rates of leading earth surface processes, a map of their distribution over the catchment area, and the connectivity index. It has been established that the average annual denudation rate within the catchment area is 0,16 mm/year. At the same time, only about 3-10% of the products of denudation are delivered to the reservoir. The sediment yield, calculated on the basis of the volume of sediments in the reservoir, is 514 t/km2 per year. It is comparable to the sediment yield of small rivers draining the mid-mountain belt of the Alps with similar bedrock lithology, which was calculated using the results of long-term observations of water and sediment discharge at gauging stations.