Combating Multicollinearity: A New Two-Parameter Approach

Janet Iyabo Idowu, Olasunkanmi James Oladapo, A. Owolabi, K. Ayinde, Oyinlade Aki̇nmoju
{"title":"Combating Multicollinearity: A New Two-Parameter Approach","authors":"Janet Iyabo Idowu, Olasunkanmi James Oladapo, A. Owolabi, K. Ayinde, Oyinlade Aki̇nmoju","doi":"10.51541/nicel.1084768","DOIUrl":null,"url":null,"abstract":"The ordinary least square (OLS) estimator is the Best Linear Unbiased Estimator (BLUE) when all linear regression model assumptions are valid. The OLS estimator, however, becomes inefficient in the presence of multicollinearity. To circumvent the problem of multicollinearity, various one and two-parameter estimators have been proposed. This paper a new two-parameter estimator called Liu-Kibria Lukman Estimator (LKL) estimator. The theoretical and simulation results show that the proposed estimator performs better than some existing estimators considered in this study under some conditions, using the mean square error criterion. A real-life application to Portland cement and Longley datasets supported the theoretical and simulation results.","PeriodicalId":382804,"journal":{"name":"Nicel Bilimler Dergisi","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nicel Bilimler Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51541/nicel.1084768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The ordinary least square (OLS) estimator is the Best Linear Unbiased Estimator (BLUE) when all linear regression model assumptions are valid. The OLS estimator, however, becomes inefficient in the presence of multicollinearity. To circumvent the problem of multicollinearity, various one and two-parameter estimators have been proposed. This paper a new two-parameter estimator called Liu-Kibria Lukman Estimator (LKL) estimator. The theoretical and simulation results show that the proposed estimator performs better than some existing estimators considered in this study under some conditions, using the mean square error criterion. A real-life application to Portland cement and Longley datasets supported the theoretical and simulation results.
对抗多重共线性:一种新的双参数方法
当所有线性回归模型假设都成立时,普通最小二乘估计量是最佳线性无偏估计量。然而,OLS估计量在多重共线性的情况下变得低效。为了避免多重共线性问题,人们提出了各种单参数和双参数估计器。本文提出了一种新的双参数估计量——LKL估计量。理论和仿真结果表明,在一定条件下,采用均方误差准则,所提估计器的性能优于本文所考虑的一些估计器。波特兰水泥和Longley数据集的实际应用支持了理论和模拟结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信