On the Feasibility and Impact of Standardising Sparse-secret LWE Parameter Sets for Homomorphic Encryption

Benjamin R. Curtis, Rachel Player
{"title":"On the Feasibility and Impact of Standardising Sparse-secret LWE Parameter Sets for Homomorphic Encryption","authors":"Benjamin R. Curtis, Rachel Player","doi":"10.1145/3338469.3358940","DOIUrl":null,"url":null,"abstract":"In November 2018, the \\urlHomomorphicEncryption.org consortium published the Homomorphic Encryption Security Standard. The Standard recommends several sets of Learning with Errors (LWE) parameters that can be selected by application developers to achieve a target security level \\( łambda \\in \\128,192,256\\ \\). These parameter sets all involve a power-of-two dimension \\( n łeq 2^15 \\), an error distribution of standard deviation \\( σ \\approx 3.19 \\), and a secret whose coefficients are either chosen uniformly in \\( \\ZZ_q \\), chosen according to the error distribution, or chosen uniformly in \\( \\ -1, 0, 1\\ \\). These parameter sets do not necessarily reflect implementation choices in the most commonly used homomorphic encryption libraries. For example, several libraries support dimensions that are not a power of two. Moreover, all known implementations for bootstrapping for the CKKS, BFV and BGV schemes use a sparse secret and a large ring dimension such as \\( n \\in \\ 2^16, 2^17 \\ \\), and advanced applications such as logistic regression have used equally large dimensions. This motivates the community to consider widening the recommended parameter sets, and the purpose of this paper is to investigate such possible extensions. We explore the security of possible sparse-secret LWE parameter sets, taking into account hybrid attacks, which are often the most competitive in the sparse-secret regime. We present a conservative analysis of the hybrid decoding and hybrid dual attacks for parameter sets of varying sparsity, with the goal of balancing security requirements with bootstrapping efficiency. We also show how the methodology in the Standard can be easily adapted to support parameter sets with power-of-two dimension \\( n \\geq 2^16 \\). We conclude with a number of discussion points to motivate future improvements to the Standard.","PeriodicalId":332171,"journal":{"name":"Proceedings of the 7th ACM Workshop on Encrypted Computing & Applied Homomorphic Cryptography","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th ACM Workshop on Encrypted Computing & Applied Homomorphic Cryptography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3338469.3358940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

In November 2018, the \urlHomomorphicEncryption.org consortium published the Homomorphic Encryption Security Standard. The Standard recommends several sets of Learning with Errors (LWE) parameters that can be selected by application developers to achieve a target security level \( łambda \in \128,192,256\ \). These parameter sets all involve a power-of-two dimension \( n łeq 2^15 \), an error distribution of standard deviation \( σ \approx 3.19 \), and a secret whose coefficients are either chosen uniformly in \( \ZZ_q \), chosen according to the error distribution, or chosen uniformly in \( \ -1, 0, 1\ \). These parameter sets do not necessarily reflect implementation choices in the most commonly used homomorphic encryption libraries. For example, several libraries support dimensions that are not a power of two. Moreover, all known implementations for bootstrapping for the CKKS, BFV and BGV schemes use a sparse secret and a large ring dimension such as \( n \in \ 2^16, 2^17 \ \), and advanced applications such as logistic regression have used equally large dimensions. This motivates the community to consider widening the recommended parameter sets, and the purpose of this paper is to investigate such possible extensions. We explore the security of possible sparse-secret LWE parameter sets, taking into account hybrid attacks, which are often the most competitive in the sparse-secret regime. We present a conservative analysis of the hybrid decoding and hybrid dual attacks for parameter sets of varying sparsity, with the goal of balancing security requirements with bootstrapping efficiency. We also show how the methodology in the Standard can be easily adapted to support parameter sets with power-of-two dimension \( n \geq 2^16 \). We conclude with a number of discussion points to motivate future improvements to the Standard.
同态加密中稀疏秘密LWE参数集标准化的可行性及影响
2018年11月,\urlHomomorphicEncryption .org联盟发布了同态加密安全标准。该标准推荐了几组带有错误的学习(LWE)参数,应用程序开发人员可以选择这些参数来实现目标安全级别\( łambda \in \128,192,256\ \)。这些参数集都涉及一个二次幂维度\( n łeq 2^15 \)、一个标准差的误差分布\( σ \approx 3.19 \)和一个秘密,其系数要么在\( \ZZ_q \)中均匀选择,要么根据误差分布选择,要么在\( \ -1, 0, 1\ \)中均匀选择。这些参数集不一定反映最常用的同态加密库中的实现选择。例如,一些库支持不是2的幂的维度。此外,所有已知的CKKS、BFV和BGV方案的自举实现都使用了一个稀疏的秘密和一个大的环维,如\( n \in \ 2^16, 2^17 \ \),而逻辑回归等高级应用也使用了同样大的维数。这促使社区考虑扩大推荐参数集,本文的目的就是研究这种可能的扩展。我们探讨了可能的稀疏秘密LWE参数集的安全性,考虑了混合攻击,这通常是稀疏秘密体制中最具竞争力的。本文对不同稀疏度参数集的混合解码和混合双重攻击进行了保守分析,目的是平衡安全需求和自举效率。我们还展示了如何轻松地调整标准中的方法来支持具有二维幂的参数集\( n \geq 2^16 \)。我们总结了一些讨论点,以激励对标准的未来改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信