Fiction Popularity Prediction Based on Emotion Analysis

Xing Wang, Shouhua Zhang, I. Smetannikov
{"title":"Fiction Popularity Prediction Based on Emotion Analysis","authors":"Xing Wang, Shouhua Zhang, I. Smetannikov","doi":"10.1145/3437802.3437831","DOIUrl":null,"url":null,"abstract":"In addition to bringing us knowledge, books also bring us emotional experiences. How do the emotional fluctuations brought by books affect readers’ evaluation of them? What is the difference in emotional fluctuations between books of different popularity? In this paper, we model and analyse the emotional fluctuations of different fiction books with different popularity and study the feasibility of predicting the popularity of fiction books using emotional fluctuations and recurrent neural networks. A new dataset is also generated to support this research and other related researches. Our proposed method obtained the best accuracy of 73.4% for predicting the popularity of fiction books and 41.4% for predicting genres. Some interesting data insights are also extracted from the dataset.","PeriodicalId":429866,"journal":{"name":"Proceedings of the 2020 1st International Conference on Control, Robotics and Intelligent System","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 1st International Conference on Control, Robotics and Intelligent System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3437802.3437831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In addition to bringing us knowledge, books also bring us emotional experiences. How do the emotional fluctuations brought by books affect readers’ evaluation of them? What is the difference in emotional fluctuations between books of different popularity? In this paper, we model and analyse the emotional fluctuations of different fiction books with different popularity and study the feasibility of predicting the popularity of fiction books using emotional fluctuations and recurrent neural networks. A new dataset is also generated to support this research and other related researches. Our proposed method obtained the best accuracy of 73.4% for predicting the popularity of fiction books and 41.4% for predicting genres. Some interesting data insights are also extracted from the dataset.
基于情感分析的小说流行度预测
除了带给我们知识,书籍还带给我们情感体验。书籍带来的情绪波动如何影响读者对书籍的评价?不同受欢迎程度的书在情绪波动上有什么不同?本文对不同受欢迎程度的小说类图书的情绪波动进行建模和分析,研究了利用情绪波动和递归神经网络预测小说类图书受欢迎程度的可行性。同时还生成了一个新的数据集来支持本研究和其他相关研究。我们提出的方法在预测小说的受欢迎程度和预测类型方面的准确率分别为73.4%和41.4%。还从数据集中提取了一些有趣的数据见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信