Y. Zeng, S. Ryu, C. Chaney, A. Hill, W. Sun, B. Keinath, C. E. Osuji, D. Sistiva, S. Ford, H. Stripling, L. Garza-Rios, S. Kim, B. Ruskin, L. Basilio, P. B. Machado, R. Castro, J. Bickel
{"title":"Finding the Right Concept Via a Decision Quality Framework with Rapid Generation of Multiple Deepwater Conceptual Alternatives","authors":"Y. Zeng, S. Ryu, C. Chaney, A. Hill, W. Sun, B. Keinath, C. E. Osuji, D. Sistiva, S. Ford, H. Stripling, L. Garza-Rios, S. Kim, B. Ruskin, L. Basilio, P. B. Machado, R. Castro, J. Bickel","doi":"10.2118/210288-ms","DOIUrl":null,"url":null,"abstract":"\n The key to finding the highest-value concept in deepwater full-field development is by making high-quality decisions during the Concept Select stage of a project. One of the critical elements to achieve this is by considering a broad range of conceptual alternatives and evaluating them rapidly, providing timely feedback, and facilitating an exploratory learning process. However, concept-select decisions are challenged by competing objectives, significant uncertainties, and many possible concepts. Further, deepwater full-field developments require strong connectivity and interfaces across multiple disciplines, which include reservoir, wells, drilling, flow assurance, subsea, flowlines, risers, topsides, metocean, geotechnical, marine, costing, and project economics.\n Key challenges to the current methodology include a lack of capacity to consider multiple concepts, slow evaluation turn-around for each concept generated, continuous evaluation and revisions with new data and information, lack of ability to integrate processes across multiple disciplines, and poor risk management driven by technical/commercial uncertainties and unavailable data. This paper addresses these challenges by combining concepts from the Decision Quality (DQ) framework and FLOCO® (Field Layout Concept Optimizer), which is a metaheuristic model-based system-engineering software, to efficiently identify the highest value field development concepts among several possible alternatives.\n This novel approach applies a new framework to an offshore deepwater full-field development. Specifically, we explore the trade-space, evaluate the trade-offs between risk and reward, perform integrated techno-economic analysis, and identify the best concepts. Key outputs are the identification of development concepts that meet the given constraints and functional requirements for further optimization, while eliminating those that do not meet such requirements.\n The results demonstrate that the challenges in the current Concept Select phase can be simplified and that the proposed approach offers a quick, logical, and insightful means of selecting the highest-value concept. The case study demonstrates that the proposed improvement to the concept-select stage of deepwater full-field development process can lead to significantly improved project economics, as it fully explores the decision-space, key uncertainties, multiple technically feasible concepts, and key performance indicators such as net present value (NPV) and capital expenditures (CAPEX).\n This paper addresses the development of economic oil and gas projects through decision making enhanced by rapid digital prototyping and analysis. The integration of Decision Quality methodologies with systems-engineering decision-support tools is novel and is likely to become more important as the industry explores and develops more complicated targets in the future.","PeriodicalId":223474,"journal":{"name":"Day 1 Mon, October 03, 2022","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, October 03, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/210288-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The key to finding the highest-value concept in deepwater full-field development is by making high-quality decisions during the Concept Select stage of a project. One of the critical elements to achieve this is by considering a broad range of conceptual alternatives and evaluating them rapidly, providing timely feedback, and facilitating an exploratory learning process. However, concept-select decisions are challenged by competing objectives, significant uncertainties, and many possible concepts. Further, deepwater full-field developments require strong connectivity and interfaces across multiple disciplines, which include reservoir, wells, drilling, flow assurance, subsea, flowlines, risers, topsides, metocean, geotechnical, marine, costing, and project economics.
Key challenges to the current methodology include a lack of capacity to consider multiple concepts, slow evaluation turn-around for each concept generated, continuous evaluation and revisions with new data and information, lack of ability to integrate processes across multiple disciplines, and poor risk management driven by technical/commercial uncertainties and unavailable data. This paper addresses these challenges by combining concepts from the Decision Quality (DQ) framework and FLOCO® (Field Layout Concept Optimizer), which is a metaheuristic model-based system-engineering software, to efficiently identify the highest value field development concepts among several possible alternatives.
This novel approach applies a new framework to an offshore deepwater full-field development. Specifically, we explore the trade-space, evaluate the trade-offs between risk and reward, perform integrated techno-economic analysis, and identify the best concepts. Key outputs are the identification of development concepts that meet the given constraints and functional requirements for further optimization, while eliminating those that do not meet such requirements.
The results demonstrate that the challenges in the current Concept Select phase can be simplified and that the proposed approach offers a quick, logical, and insightful means of selecting the highest-value concept. The case study demonstrates that the proposed improvement to the concept-select stage of deepwater full-field development process can lead to significantly improved project economics, as it fully explores the decision-space, key uncertainties, multiple technically feasible concepts, and key performance indicators such as net present value (NPV) and capital expenditures (CAPEX).
This paper addresses the development of economic oil and gas projects through decision making enhanced by rapid digital prototyping and analysis. The integration of Decision Quality methodologies with systems-engineering decision-support tools is novel and is likely to become more important as the industry explores and develops more complicated targets in the future.