Can data transformation help in the detection of fault-prone modules?

Yue Jiang, B. Cukic, T. Menzies
{"title":"Can data transformation help in the detection of fault-prone modules?","authors":"Yue Jiang, B. Cukic, T. Menzies","doi":"10.1145/1390817.1390822","DOIUrl":null,"url":null,"abstract":"Data preprocessing (transformation) plays an important role in data mining and machine learning. In this study, we investigate the effect of four different preprocessing methods to fault-proneness prediction using nine datasets from NASA Metrics Data Programs (MDP) and ten classification algorithms. Our experiments indicate that log transformation rarely improves classification performance, but discretization affects the performance of many different algorithms. The impact of different transformations differs. Random forest algorithm, for example, performs better with original and log transformed data set. Boosting and NaiveBayes perform significantly better with discretized data. We conclude that no general benefit can be expected from data transformations. Instead, selected transformation techniques are recommended to boost the performance of specific classification algorithms.","PeriodicalId":193694,"journal":{"name":"DEFECTS '08","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"90","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DEFECTS '08","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1390817.1390822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 90

Abstract

Data preprocessing (transformation) plays an important role in data mining and machine learning. In this study, we investigate the effect of four different preprocessing methods to fault-proneness prediction using nine datasets from NASA Metrics Data Programs (MDP) and ten classification algorithms. Our experiments indicate that log transformation rarely improves classification performance, but discretization affects the performance of many different algorithms. The impact of different transformations differs. Random forest algorithm, for example, performs better with original and log transformed data set. Boosting and NaiveBayes perform significantly better with discretized data. We conclude that no general benefit can be expected from data transformations. Instead, selected transformation techniques are recommended to boost the performance of specific classification algorithms.
数据转换是否有助于检测易故障模块?
数据预处理(转换)在数据挖掘和机器学习中起着重要的作用。在这项研究中,我们使用来自NASA计量数据计划(MDP)的9个数据集和10种分类算法,研究了4种不同的预处理方法对故障倾向预测的影响。我们的实验表明,对数变换很少能提高分类性能,而离散化会影响许多不同算法的性能。不同转换的影响是不同的。以随机森林算法为例,它在原始数据集和对数变换数据集上都有较好的表现。对于离散化的数据,Boosting和NaiveBayes的表现要好得多。我们得出的结论是,不能期望从数据转换中获得一般的好处。相反,推荐选择转换技术来提高特定分类算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信